For any algebraic expressions
and
and any positive real number
where
if and only if
Definition of a logarithm
For any algebraic expression
S and positive real numbers
and
where
if and only if
One-to-one property for logarithmic functions
For any algebraic expressions
S and
T and any positive real number
where
if and only if
Key concepts
We can solve many exponential equations by using the rules of exponents to rewrite each side as a power with the same base. Then we use the fact that exponential functions are one-to-one to set the exponents equal to one another and solve for the unknown.
When we are given an exponential equation where the bases are explicitly shown as being equal, set the exponents equal to one another and solve for the unknown. See
[link] .
When we are given an exponential equation where the bases are
not explicitly shown as being equal, rewrite each side of the equation as powers of the same base, then set the exponents equal to one another and solve for the unknown. See
[link] ,
[link] , and
[link] .
When an exponential equation cannot be rewritten with a common base, solve by taking the logarithm of each side. See
[link] .
We can solve exponential equations with base
by applying the natural logarithm of both sides because exponential and logarithmic functions are inverses of each other. See
[link] and
[link] .
After solving an exponential equation, check each solution in the original equation to find and eliminate any extraneous solutions. See
[link] .
When given an equation of the form
where
is an algebraic expression, we can use the definition of a logarithm to rewrite the equation as the equivalent exponential equation
and solve for the unknown. See
[link] and
[link] .
We can also use graphing to solve equations with the form
We graph both equations
and
on the same coordinate plane and identify the solution as the
x- value of the intersecting point. See
[link] .
When given an equation of the form
where
and
are algebraic expressions, we can use the one-to-one property of logarithms to solve the equation
for the unknown. See
[link] .
Combining the skills learned in this and previous sections, we can solve equations that model real world situations, whether the unknown is in an exponent or in the argument of a logarithm. See
[link] .
Section exercises
Verbal
How can an exponential equation be solved?
Determine first if the equation can be rewritten so that each side uses the same base. If so, the exponents can be set equal to each other. If the equation cannot be rewritten so that each side uses the same base, then apply the logarithm to each side and use properties of logarithms to solve.
software engineering is a the branch of computer science deals with the design,development, testing and maintenance of software applications.
Hayder
who is best bw software engineering and cyber security
Ahmad
Both software engineering and cybersecurity offer exciting career prospects, but your choice ultimately depends on your interests and skills. If you enjoy problem-solving, programming, and designing software syste
Software engineering is a branch of computer science directed to writing programs to develop Softwares that can drive or enable the functionality of some hardwares like phone , automobile and others
kelvin
if any requirement engineer is gathering requirements from client and after getting he/she Analyze them this process is called
The following text is encoded in base 64.
Ik5ldmVyIHRydXN0IGEgY29tcHV0ZXIgeW91IGNhbid0IHRocm93IG91dCBhIHdpbmRvdyIgLSBTdGV2ZSBXb3puaWFr
Decode it, and paste the decoded text here