<< Chapter < Page Chapter >> Page >

Understanding properties of determinants

There are many properties of determinants . Listed here are some properties that may be helpful in calculating the determinant of a matrix.

Properties of determinants

  1. If the matrix is in upper triangular form, the determinant equals the product of entries down the main diagonal.
  2. When two rows are interchanged, the determinant changes sign.
  3. If either two rows or two columns are identical, the determinant equals zero.
  4. If a matrix contains either a row of zeros or a column of zeros, the determinant equals zero.
  5. The determinant of an inverse matrix A 1 is the reciprocal of the determinant of the matrix A .
  6. If any row or column is multiplied by a constant, the determinant is multiplied by the same factor.

Illustrating properties of determinants

Illustrate each of the properties of determinants.

Property 1 states that if the matrix is in upper triangular form, the determinant is the product of the entries down the main diagonal.

A = [ 1 2 3 0 2 1 0 0 1 ]

Augment A with the first two columns.

A = [ 1 2 3 0 2 1 0 0 1 | 1 0 0 2 2 0 ]

Then

det ( A ) = 1 ( 2 ) ( −1 ) + 2 ( 1 ) ( 0 ) + 3 ( 0 ) ( 0 ) 0 ( 2 ) ( 3 ) 0 ( 1 ) ( 1 ) + 1 ( 0 ) ( 2 ) = −2

Property 2 states that interchanging rows changes the sign. Given

A = [ −1 5 4 −3 ] , det ( A ) = ( −1 ) ( −3 ) ( 4 ) ( 5 ) = 3 20 = −17 B = [ 4 3 1 5 ] , det ( B ) = ( 4 ) ( 5 ) ( −1 ) ( −3 ) = 20 3 = 17

Property 3 states that if two rows or two columns are identical, the determinant equals zero.

A = [ 1 2 2 2 2 2 −1 2 2    |    1 2 −1   2 2 2 ] det ( A ) = 1 ( 2 ) ( 2 ) + 2 ( 2 ) ( −1 ) + 2 ( 2 ) ( 2 ) + 1 ( 2 ) ( 2 ) 2 ( 2 ) ( 1 ) 2 ( 2 ) ( 2 ) = 4 4 + 8 + 4 4 8 = 0

Property 4 states that if a row or column equals zero, the determinant equals zero. Thus,

A = [ 1 2 0 0 ] , det ( A ) = 1 ( 0 ) 2 ( 0 ) = 0

Property 5 states that the determinant of an inverse matrix A 1 is the reciprocal of the determinant A . Thus,

A = [ 1 2 3 4 ] , det ( A ) = 1 ( 4 ) 3 ( 2 ) = −2 A 1 = [ 2 1 3 2 1 2 ] , det ( A 1 ) = 2 ( 1 2 ) ( 3 2 ) ( 1 ) = 1 2

Property 6 states that if any row or column of a matrix is multiplied by a constant, the determinant is multiplied by the same factor. Thus,

A = [ 1 2 3 4 ] , det ( A ) = 1 ( 4 ) 2 ( 3 ) = −2 B = [ 2 ( 1 ) 2 ( 2 ) 3 4 ] , det ( B ) = 2 ( 4 ) 3 ( 4 ) = −4
Got questions? Get instant answers now!
Got questions? Get instant answers now!

Using cramer’s rule and determinant properties to solve a system

Find the solution to the given 3 × 3 system.

2 x + 4 y + 4 z = 2 ( 1 ) 3 x + 7 y + 7 z = −5 ( 2 )    x + 2 y + 2 z = 4 ( 3 )

Using Cramer’s Rule    , we have

D = | 2 4 4 3 7 7 1 2 2 |

Notice that the second and third columns are identical. According to Property 3, the determinant will be zero, so there is either no solution or an infinite number of solutions. We have to perform elimination to find out.

  1. Multiply equation (3) by –2 and add the result to equation (1).
    2 x 4 y 4 x = 8     2 x + 4 y + 4 z = 2 0 = 6

Obtaining a statement that is a contradiction means that the system has no solution.

Got questions? Get instant answers now!
Got questions? Get instant answers now!

Access these online resources for additional instruction and practice with Cramer’s Rule.

Key concepts

  • The determinant for [ a b c d ] is a d b c . See [link] .
  • Cramer’s Rule replaces a variable column with the constant column. Solutions are x = D x D , y = D y D . See [link] .
  • To find the determinant of a 3×3 matrix, augment with the first two columns. Add the three diagonal entries (upper left to lower right) and subtract the three diagonal entries (lower left to upper right). See [link] .
  • To solve a system of three equations in three variables using Cramer’s Rule, replace a variable column with the constant column for each desired solution: x = D x D , y = D y D , z = D z D . See [link] .
  • Cramer’s Rule is also useful for finding the solution of a system of equations with no solution or infinite solutions. See [link] and [link] .
  • Certain properties of determinants are useful for solving problems. For example:
    • If the matrix is in upper triangular form, the determinant equals the product of entries down the main diagonal.
    • When two rows are interchanged, the determinant changes sign.
    • If either two rows or two columns are identical, the determinant equals zero.
    • If a matrix contains either a row of zeros or a column of zeros, the determinant equals zero.
    • The determinant of an inverse matrix A 1 is the reciprocal of the determinant of the matrix A .
    • If any row or column is multiplied by a constant, the determinant is multiplied by the same factor. See [link] and [link] .

Questions & Answers

what is decentralised
mithlesh Reply
Ayele, K., 2003. Introductory Economics, 3rd ed., Addis Ababa.
Widad Reply
can you send the book attached ?
Ariel
?
Ariel
What is economics
Widad Reply
the study of how humans make choices under conditions of scarcity
AI-Robot
U(x,y) = (x×y)1/2 find mu of x for y
Desalegn Reply
U(x,y) = (x×y)1/2 find mu of x for y
Desalegn
what is ecnomics
Jan Reply
this is the study of how the society manages it's scarce resources
Belonwu
what is macroeconomic
John Reply
macroeconomic is the branch of economics which studies actions, scale, activities and behaviour of the aggregate economy as a whole.
husaini
etc
husaini
difference between firm and industry
husaini Reply
what's the difference between a firm and an industry
Abdul
firm is the unit which transform inputs to output where as industry contain combination of firms with similar production 😅😅
Abdulraufu
Suppose the demand function that a firm faces shifted from Qd  120 3P to Qd  90  3P and the supply function has shifted from QS  20  2P to QS 10  2P . a) Find the effect of this change on price and quantity. b) Which of the changes in demand and supply is higher?
Toofiq Reply
explain standard reason why economic is a science
innocent Reply
factors influencing supply
Petrus Reply
what is economic.
Milan Reply
scares means__________________ends resources. unlimited
Jan
economics is a science that studies human behaviour as a relationship b/w ends and scares means which have alternative uses
Jan
calculate the profit maximizing for demand and supply
Zarshad Reply
Why qualify 28 supplies
Milan
what are explicit costs
Nomsa Reply
out-of-pocket costs for a firm, for example, payments for wages and salaries, rent, or materials
AI-Robot
concepts of supply in microeconomics
David Reply
economic overview notes
Amahle Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 2

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Algebra and trigonometry. OpenStax CNX. Nov 14, 2016 Download for free at https://legacy.cnx.org/content/col11758/1.6
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Algebra and trigonometry' conversation and receive update notifications?

Ask