<< Chapter < Page Chapter >> Page >

Sketch the graph of r = θ over the interval [ 0 , 4 π ] .

Got questions? Get instant answers now!

Summary of curves

We have explored a number of seemingly complex polar curves in this section. [link] and [link] summarize the graphs and equations for each of these curves.

Four graphs side by side - a summary. (A) is a circle: r=asin(theta) or r=acos(theta). (B) is a cardioid: r= a + or - bcos(theta), or r = a + or - b sin(theta). a>0, b>0, a/b=1. (C) is one-loop limaçons. r= a + or - bcos(theta), or r= a + or - bsin(theta). a>0, b>0, 1<a/b<2. (D) is inner-loop limaçons. R = a + or - bcos(theta), or r = a + or - bsin(theta). A>0, b>0, a<b.
Four graphs side by side - a summary. (A) is lemniscates. R^2 = a^2cos(2theta), or r^2=a^2sin(2theta). a is not equal to 0. (B) is a rsose curve (n even). R = acos(ntheta), or r=asin(ntheta). N is even, and there are 2n petals. (C) is a rose curve (n odd). R = acos(ntheta), or r=asin(theta). N is odd, and there are n petals. (D) is an Archimedes's spiral. R=theta, and theta >=0.

Access these online resources for additional instruction and practice with graphs of polar coordinates.

Key concepts

  • It is easier to graph polar equations if we can test the equations for symmetry with respect to the line θ = π 2 , the polar axis, or the pole.
  • There are three symmetry tests that indicate whether the graph of a polar equation will exhibit symmetry. If an equation fails a symmetry test, the graph may or may not exhibit symmetry. See [link] .
  • Polar equations may be graphed by making a table of values for θ and r .
  • The maximum value of a polar equation is found by substituting the value θ that leads to the maximum value of the trigonometric expression.
  • The zeros of a polar equation are found by setting r = 0 and solving for θ . See [link] .
  • Some formulas that produce the graph of a circle in polar coordinates are given by r = a cos θ and r = a sin θ . See [link] .
  • The formulas that produce the graphs of a cardioid are given by r = a ± b cos θ and r = a ± b sin θ , for a > 0 , b > 0 , and a b = 1. See [link] .
  • The formulas that produce the graphs of a one-loop limaçon are given by r = a ± b cos θ and r = a ± b sin θ for 1 < a b < 2. See [link] .
  • The formulas that produce the graphs of an inner-loop limaçon are given by r = a ± b cos θ and r = a ± b sin θ for a > 0 , b > 0 , and a < b . See [link] .
  • The formulas that produce the graphs of a lemniscates are given by r 2 = a 2 cos 2 θ and r 2 = a 2 sin 2 θ , where a 0. See [link] .
  • The formulas that produce the graphs of rose curves are given by r = a cos n θ and r = a sin n θ , where a 0 ; if n is even, there are 2 n petals, and if n is odd, there are n petals. See [link] and [link] .
  • The formula that produces the graph of an Archimedes’ spiral is given by r = θ , θ 0. See [link] .

Section exercises

Verbal

Describe the three types of symmetry in polar graphs, and compare them to the symmetry of the Cartesian plane.

Symmetry with respect to the polar axis is similar to symmetry about the x -axis, symmetry with respect to the pole is similar to symmetry about the origin, and symmetric with respect to the line θ = π 2 is similar to symmetry about the y -axis.

Got questions? Get instant answers now!

Which of the three types of symmetries for polar graphs correspond to the symmetries with respect to the x -axis, y -axis, and origin?

Got questions? Get instant answers now!

What are the steps to follow when graphing polar equations?

Test for symmetry; find zeros, intercepts, and maxima; make a table of values. Decide the general type of graph, cardioid, limaçon, lemniscate, etc., then plot points at θ = 0 , π 2 , π and  3 π 2 , and sketch the graph.

Got questions? Get instant answers now!

Describe the shapes of the graphs of cardioids, limaçons, and lemniscates.

Got questions? Get instant answers now!

What part of the equation determines the shape of the graph of a polar equation?

The shape of the polar graph is determined by whether or not it includes a sine, a cosine, and constants in the equation.

Got questions? Get instant answers now!

Graphical

For the following exercises, test the equation for symmetry.

r = 3 3 cos θ

symmetric with respect to the polar axis

Got questions? Get instant answers now!

r = 3 sin 2 θ

symmetric with respect to the polar axis, symmetric with respect to the line θ = π 2 , symmetric with respect to the pole

Got questions? Get instant answers now!

r = 5 sin 2 θ

symmetric with respect to the pole

Got questions? Get instant answers now!

For the following exercises, graph the polar equation. Identify the name of the shape.

r = 2 2 cos θ

cardioid
Graph of given cardioid.

Got questions? Get instant answers now!

r = 3 + 3 sin θ

cardioid
Graph of given cardioid.

Got questions? Get instant answers now!

r = 7 + 4 sin θ

one-loop/dimpled limaçon

Graph of given one-loop/dimpled limaçon
Got questions? Get instant answers now!

r = 5 + 4 cos θ

one-loop/dimpled limaçon
Graph of given one-loop/dimpled limaçon

Got questions? Get instant answers now!

r = 1 + 3 sin θ

inner loop/two-loop limaçon

Graph of given inner loop/two-loop limaçon
Got questions? Get instant answers now!

r = 5 + 7 sin θ

inner loop/two-loop limaçon

Graph of given inner loop/two-loop limaçon
Got questions? Get instant answers now!

r = 5 + 6 cos θ

inner loop/two-loop limaçon
Graph of given inner loop/two-loop limaçon

Got questions? Get instant answers now!

r 2 = 10 cos ( 2 θ )

lemniscate

Graph of given lemniscate (along horizontal axis)
Got questions? Get instant answers now!

r 2 = 10 sin ( 2 θ )

lemniscate

Graph of given lemniscate (along y=x)
Got questions? Get instant answers now!

r = 3 cos ( 2 θ )

rose curve

Graph of given rose curve - four petals.
Got questions? Get instant answers now!

r = 4 sin ( 4 θ )

rose curve

Graph of given rose curve - eight petals.
Got questions? Get instant answers now!

r = θ

Archimedes’ spiral

Graph of given Archimedes' spiral
Got questions? Get instant answers now!

r = 3 θ

Archimedes’ spiral

Graph of given Archimedes' spiral
Got questions? Get instant answers now!

Technology

For the following exercises, use a graphing calculator to sketch the graph of the polar equation.

r = 2 sin θ tan θ , a cissoid

Got questions? Get instant answers now!

r = 2 1 sin 2 θ , a hippopede

Graph of given hippopede (two circles that are centered along the x-axis and meet at the origin)
Got questions? Get instant answers now!

For the following exercises, use a graphing utility to graph each pair of polar equations on a domain of [ 0 , 4 π ] and then explain the differences shown in the graphs.

r = θ , r = θ + sin θ

They are both spirals, but not quite the same.

Got questions? Get instant answers now!

r = sin θ + θ , r = sin θ θ

Got questions? Get instant answers now!

r = 2 sin ( θ 2 ) , r = θ sin ( θ 2 )

Both graphs are curves with 2 loops. The equation with a coefficient of θ has two loops on the left, the equation with a coefficient of 2 has two loops side by side. Graph these from 0 to 4 π to get a better picture.

Got questions? Get instant answers now!

r = sin ( cos ( 3 θ ) ) r = sin ( 3 θ )

Got questions? Get instant answers now!

On a graphing utility, graph r = sin ( 16 5 θ ) on [ 0 , 4 π ] , [ 0 , 8 π ] , [ 0 , 12 π ] , and [ 0 , 16 π ] . Describe the effect of increasing the width of the domain.

When the width of the domain is increased, more petals of the flower are visible.

Got questions? Get instant answers now!

On a graphing utility, graph and sketch r = sin θ + ( sin ( 5 2 θ ) ) 3 on [ 0 , 4 π ] .

Got questions? Get instant answers now!

On a graphing utility, graph each polar equation. Explain the similarities and differences you observe in the graphs.

r 1 = 3 sin ( 3 θ ) r 2 = 2 sin ( 3 θ ) r 3 = sin ( 3 θ )

The graphs are three-petal, rose curves. The larger the coefficient, the greater the curve’s distance from the pole.

Got questions? Get instant answers now!

On a graphing utility, graph each polar equation. Explain the similarities and differences you observe in the graphs.

r 1 = 3 + 3 cos θ r 2 = 2 + 2 cos θ r 3 = 1 + cos θ
Got questions? Get instant answers now!

On a graphing utility, graph each polar equation. Explain the similarities and differences you observe in the graphs.

r 1 = 3 θ r 2 = 2 θ r 3 = θ

The graphs are spirals. The smaller the coefficient, the tighter the spiral.

Got questions? Get instant answers now!

Extensions

For the following exercises, draw each polar equation on the same set of polar axes, and find the points of intersection.

r 1 = 3 + 2 sin θ , r 2 = 2

Got questions? Get instant answers now!

r 1 = 6 4 cos θ , r 2 = 4

( 4 , π 3 ) , ( 4 , 5 π 3 )

Got questions? Get instant answers now!

r 1 = 1 + sin θ , r 2 = 3 sin θ

Got questions? Get instant answers now!

r 1 = 1 + cos θ , r 2 = 3 cos θ

( 3 2 , π 3 ) , ( 3 2 , 5 π 3 )

Got questions? Get instant answers now!

r 1 = cos ( 2 θ ) , r 2 = sin ( 2 θ )

Got questions? Get instant answers now!

r 1 = sin 2 ( 2 θ ) , r 2 = 1 cos ( 4 θ )

( 0 , π 2 ) , ( 0 , π ) , ( 0 , 3 π 2 ) , ( 0 , 2 π )

Got questions? Get instant answers now!

r 1 = 3 , r 2 = 2 sin ( θ )

Got questions? Get instant answers now!

r 1 2 = sin θ , r 2 2 = cos θ

( 8 4 2 , π 4 ) , ( 8 4 2 , 5 π 4 ) and at θ = 3 π 4 , 7 π 4 since r is squared

Got questions? Get instant answers now!

r 1 = 1 + cos θ , r 2 = 1 sin θ

Got questions? Get instant answers now!

Questions & Answers

A golfer on a fairway is 70 m away from the green, which sits below the level of the fairway by 20 m. If the golfer hits the ball at an angle of 40° with an initial speed of 20 m/s, how close to the green does she come?
Aislinn Reply
cm
tijani
what is titration
John Reply
what is physics
Siyaka Reply
A mouse of mass 200 g falls 100 m down a vertical mine shaft and lands at the bottom with a speed of 8.0 m/s. During its fall, how much work is done on the mouse by air resistance
Jude Reply
Can you compute that for me. Ty
Jude
what is the dimension formula of energy?
David Reply
what is viscosity?
David
what is inorganic
emma Reply
what is chemistry
Youesf Reply
what is inorganic
emma
Chemistry is a branch of science that deals with the study of matter,it composition,it structure and the changes it undergoes
Adjei
please, I'm a physics student and I need help in physics
Adjanou
chemistry could also be understood like the sexual attraction/repulsion of the male and female elements. the reaction varies depending on the energy differences of each given gender. + masculine -female.
Pedro
A ball is thrown straight up.it passes a 2.0m high window 7.50 m off the ground on it path up and takes 1.30 s to go past the window.what was the ball initial velocity
Krampah Reply
2. A sled plus passenger with total mass 50 kg is pulled 20 m across the snow (0.20) at constant velocity by a force directed 25° above the horizontal. Calculate (a) the work of the applied force, (b) the work of friction, and (c) the total work.
Sahid Reply
you have been hired as an espert witness in a court case involving an automobile accident. the accident involved car A of mass 1500kg which crashed into stationary car B of mass 1100kg. the driver of car A applied his brakes 15 m before he skidded and crashed into car B. after the collision, car A s
Samuel Reply
can someone explain to me, an ignorant high school student, why the trend of the graph doesn't follow the fact that the higher frequency a sound wave is, the more power it is, hence, making me think the phons output would follow this general trend?
Joseph Reply
Nevermind i just realied that the graph is the phons output for a person with normal hearing and not just the phons output of the sound waves power, I should read the entire thing next time
Joseph
Follow up question, does anyone know where I can find a graph that accuretly depicts the actual relative "power" output of sound over its frequency instead of just humans hearing
Joseph
"Generation of electrical energy from sound energy | IEEE Conference Publication | IEEE Xplore" ***ieeexplore.ieee.org/document/7150687?reload=true
Ryan
what's motion
Maurice Reply
what are the types of wave
Maurice
answer
Magreth
progressive wave
Magreth
hello friend how are you
Muhammad Reply
fine, how about you?
Mohammed
hi
Mujahid
A string is 3.00 m long with a mass of 5.00 g. The string is held taut with a tension of 500.00 N applied to the string. A pulse is sent down the string. How long does it take the pulse to travel the 3.00 m of the string?
yasuo Reply
Who can show me the full solution in this problem?
Reofrir Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 9

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Algebra and trigonometry. OpenStax CNX. Nov 14, 2016 Download for free at https://legacy.cnx.org/content/col11758/1.6
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Algebra and trigonometry' conversation and receive update notifications?

Ask