<< Chapter < Page Chapter >> Page >

From the Pythagorean Theorem, we get

x 2 + y 2 = 1

Substituting x = 1 2 , we get

( 1 2 ) 2 + y 2 = 1

Solving for y , we get

1 4 + y 2 = 1 y 2 = 1 1 4 y 2 = 3 4 y = ± 3 2

Since t = π 3 has the terminal side in quadrant I where the y- coordinate is positive, we choose y = 3 2 , the positive value.

At t = π 3 (60°), the ( x , y ) coordinates for the point on a circle of radius 1 at an angle of 60° are ( 1 2 , 3 2 ) , so we can find the sine and cosine.

( x , y ) = ( 1 2 , 3 2 ) x = 1 2 , y = 3 2 cos  t = 1 2 , sin  t = 3 2

We have now found the cosine and sine values for all of the most commonly encountered angles in the first quadrant of the unit circle. [link] summarizes these values.

Angle 0 π 6 , or 30° π 4 , or 45° π 3 , or 60° π 2 , or 90°
Cosine 1 3 2 2 2 1 2 0
Sine 0 1 2 2 2 3 2 1

[link] shows the common angles in the first quadrant of the unit circle.

Graph of a quarter circle with angles of 0, 30, 45, 60, and 90 degrees inscribed. Equivalence of angles in radians shown. Points along circle are marked.

Using a calculator to find sine and cosine

To find the cosine and sine of angles other than the special angles, we turn to a computer or calculator. Be aware : Most calculators can be set into “degree” or “radian” mode, which tells the calculator the units for the input value. When we evaluate cos ( 30 ) on our calculator, it will evaluate it as the cosine of 30 degrees if the calculator is in degree mode, or the cosine of 30 radians if the calculator is in radian mode.

Given an angle in radians, use a graphing calculator to find the cosine.

  1. If the calculator has degree mode and radian mode, set it to radian mode.
  2. Press the COS key.
  3. Enter the radian value of the angle and press the close-parentheses key ")".
  4. Press ENTER.

Using a graphing calculator to find sine and cosine

Evaluate cos ( 5 π 3 ) using a graphing calculator or computer.

Enter the following keystrokes:

COS (   5   ×   π   ÷  3 ) ENTER

cos ( 5 π 3 ) = 0.5
Got questions? Get instant answers now!
Got questions? Get instant answers now!

Evaluate sin ( π 3 ) .

approximately 0.866025403

Got questions? Get instant answers now!

Identifying the domain and range of sine and cosine functions

Now that we can find the sine and cosine of an angle, we need to discuss their domains and ranges. What are the domains of the sine and cosine functions? That is, what are the smallest and largest numbers that can be inputs of the functions? Because angles smaller than 0 and angles larger than 2 π can still be graphed on the unit circle and have real values of x , y , and r , there is no lower or upper limit to the angles that can be inputs to the sine and cosine functions. The input to the sine and cosine functions is the rotation from the positive x -axis, and that may be any real number.

What are the ranges of the sine and cosine functions? What are the least and greatest possible values for their output? We can see the answers by examining the unit circle, as shown in [link] . The bounds of the x -coordinate are [ −1 , 1 ] . The bounds of the y -coordinate are also [ −1 , 1 ] . Therefore, the range of both the sine and cosine functions is [ −1 , 1 ] .

Graph of unit circle.

Finding reference angles

We have discussed finding the sine and cosine for angles in the first quadrant, but what if our angle is in another quadrant? For any given angle in the first quadrant, there is an angle in the second quadrant with the same sine value. Because the sine value is the y -coordinate on the unit circle, the other angle with the same sine will share the same y -value, but have the opposite x -value. Therefore, its cosine value will be the opposite of the first angle’s cosine value.

Questions & Answers

explain the basic method of power of power rule under indices.
Sumo Reply
Why is b in the answer
Dahsolar Reply
how do you work it out?
Brad Reply
answer
Ernest
heheheehe
Nitin
(Pcos∅+qsin∅)/(pcos∅-psin∅)
John Reply
how to do that?
Rosemary Reply
what is it about?
Amoah
how to answer the activity
Chabelita Reply
how to solve the activity
Chabelita
solve for X,,4^X-6(2^)-16=0
Alieu Reply
x4xminus 2
Lominate
sobhan Singh jina uniwarcity tignomatry ka long answers tile questions
harish Reply
t he silly nut company makes two mixtures of nuts: mixture a and mixture b. a pound of mixture a contains 12 oz of peanuts, 3 oz of almonds and 1 oz of cashews and sells for $4. a pound of mixture b contains 12 oz of peanuts, 2 oz of almonds and 2 oz of cashews and sells for $5. the company has 1080
ZAHRO Reply
If  , , are the roots of the equation 3 2 0, x px qx r     Find the value of 1  .
Swetha Reply
Parts of a pole were painted red, blue and yellow. 3/5 of the pole was red and 7/8 was painted blue. What part was painted yellow?
Patrick Reply
Parts of the pole was painted red, blue and yellow. 3 /5 of the pole was red and 7 /8 was painted blue. What part was painted yellow?
Patrick
how I can simplify algebraic expressions
Katleho Reply
Lairene and Mae are joking that their combined ages equal Sam’s age. If Lairene is twice Mae’s age and Sam is 69 yrs old, what are Lairene’s and Mae’s ages?
Mary Reply
23yrs
Yeboah
lairenea's age is 23yrs
ACKA
hy
Katleho
Ello everyone
Katleho
Laurene is 46 yrs and Mae is 23 is
Solomon
hey people
christopher
age does not matter
christopher
solve for X, 4^x-6(2*)-16=0
Alieu
prove`x^3-3x-2cosA=0 (-π<A<=π
Mayank Reply
create a lesson plan about this lesson
Rose Reply
Practice Key Terms 3

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Algebra and trigonometry. OpenStax CNX. Nov 14, 2016 Download for free at https://legacy.cnx.org/content/col11758/1.6
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Algebra and trigonometry' conversation and receive update notifications?

Ask