<< Chapter < Page Chapter >> Page >
In this section you will:
  • Set up a linear equation to solve a real-world application.
  • Use a formula to solve a real-world application.
Many students studying in a large lecture hall
Credit: Kevin Dooley

Josh is hoping to get an A in his college algebra class. He has scores of 75, 82, 95, 91, and 94 on his first five tests. Only the final exam remains, and the maximum of points that can be earned is 100. Is it possible for Josh to end the course with an A? A simple linear equation will give Josh his answer.

Many real-world applications can be modeled by linear equations. For example, a cell phone package may include a monthly service fee plus a charge per minute of talk-time; it costs a widget manufacturer a certain amount to produce x widgets per month plus monthly operating charges; a car rental company charges a daily fee plus an amount per mile driven. These are examples of applications we come across every day that are modeled by linear equations. In this section, we will set up and use linear equations to solve such problems.

Setting up a linear equation to solve a real-world application

To set up or model a linear equation to fit a real-world application, we must first determine the known quantities and define the unknown quantity as a variable. Then, we begin to interpret the words as mathematical expressions using mathematical symbols. Let us use the car rental example above. In this case, a known cost, such as $0.10/mi, is multiplied by an unknown quantity, the number of miles driven. Therefore, we can write 0.10 x . This expression represents a variable cost because it changes according to the number of miles driven.

If a quantity is independent of a variable, we usually just add or subtract it, according to the problem. As these amounts do not change, we call them fixed costs. Consider a car rental agency that charges $0.10/mi plus a daily fee of $50. We can use these quantities to model an equation that can be used to find the daily car rental cost C .

C = 0.10 x + 50

When dealing with real-world applications, there are certain expressions that we can translate directly into math. [link] lists some common verbal expressions and their equivalent mathematical expressions.

Verbal Translation to Math Operations
One number exceeds another by a x , x + a
Twice a number 2 x
One number is a more than another number x , x + a
One number is a less than twice another number x , 2 x a
The product of a number and a , decreased by b a x b
The quotient of a number and the number plus a is three times the number x x + a = 3 x
The product of three times a number and the number decreased by b is c 3 x ( x b ) = c

Given a real-world problem, model a linear equation to fit it.

  1. Identify known quantities.
  2. Assign a variable to represent the unknown quantity.
  3. If there is more than one unknown quantity, find a way to write the second unknown in terms of the first.
  4. Write an equation interpreting the words as mathematical operations.
  5. Solve the equation. Be sure the solution can be explained in words, including the units of measure.

Modeling a linear equation to solve an unknown number problem

Find a linear equation to solve for the following unknown quantities: One number exceeds another number by 17 and their sum is 31. Find the two numbers.

Let x equal the first number. Then, as the second number exceeds the first by 17, we can write the second number as x + 17. The sum of the two numbers is 31. We usually interpret the word is as an equal sign.

x + ( x + 17 ) = 31 2 x + 17 = 31 Simplify and solve . 2 x = 14 x = 7 x + 17 = 7 + 17 = 24

The two numbers are 7 and 24.

Got questions? Get instant answers now!
Got questions? Get instant answers now!

Questions & Answers

explain the basic method of power of power rule under indices.
Sumo Reply
Why is b in the answer
Dahsolar Reply
how do you work it out?
Brad Reply
answer
Ernest
heheheehe
Nitin
(Pcos∅+qsin∅)/(pcos∅-psin∅)
John Reply
how to do that?
Rosemary Reply
what is it about?
Amoah
how to answer the activity
Chabelita Reply
how to solve the activity
Chabelita
solve for X,,4^X-6(2^)-16=0
Alieu Reply
x4xminus 2
Lominate
sobhan Singh jina uniwarcity tignomatry ka long answers tile questions
harish Reply
t he silly nut company makes two mixtures of nuts: mixture a and mixture b. a pound of mixture a contains 12 oz of peanuts, 3 oz of almonds and 1 oz of cashews and sells for $4. a pound of mixture b contains 12 oz of peanuts, 2 oz of almonds and 2 oz of cashews and sells for $5. the company has 1080
ZAHRO Reply
If  , , are the roots of the equation 3 2 0, x px qx r     Find the value of 1  .
Swetha Reply
Parts of a pole were painted red, blue and yellow. 3/5 of the pole was red and 7/8 was painted blue. What part was painted yellow?
Patrick Reply
Parts of the pole was painted red, blue and yellow. 3 /5 of the pole was red and 7 /8 was painted blue. What part was painted yellow?
Patrick
how I can simplify algebraic expressions
Katleho Reply
Lairene and Mae are joking that their combined ages equal Sam’s age. If Lairene is twice Mae’s age and Sam is 69 yrs old, what are Lairene’s and Mae’s ages?
Mary Reply
23yrs
Yeboah
lairenea's age is 23yrs
ACKA
hy
Katleho
Ello everyone
Katleho
Laurene is 46 yrs and Mae is 23 is
Solomon
hey people
christopher
age does not matter
christopher
solve for X, 4^x-6(2*)-16=0
Alieu
prove`x^3-3x-2cosA=0 (-π<A<=π
Mayank Reply
create a lesson plan about this lesson
Rose Reply
Practice Key Terms 3

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Algebra and trigonometry. OpenStax CNX. Nov 14, 2016 Download for free at https://legacy.cnx.org/content/col11758/1.6
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Algebra and trigonometry' conversation and receive update notifications?

Ask