<< Chapter < Page Chapter >> Page >
In this section students will:
  • Use the product rule of exponents.
  • Use the quotient rule of exponents.
  • Use the power rule of exponents.
  • Use the zero exponent rule of exponents.
  • Use the negative rule of exponents.
  • Find the power of a product and a quotient.
  • Simplify exponential expressions.
  • Use scientific notation.

Mathematicians, scientists, and economists commonly encounter very large and very small numbers. But it may not be obvious how common such figures are in everyday life. For instance, a pixel is the smallest unit of light that can be perceived and recorded by a digital camera. A particular camera might record an image that is 2,048 pixels by 1,536 pixels, which is a very high resolution picture. It can also perceive a color depth (gradations in colors) of up to 48 bits per frame, and can shoot the equivalent of 24 frames per second. The maximum possible number of bits of information used to film a one-hour (3,600-second) digital film is then an extremely large number.

Using a calculator, we enter 2,048 × 1,536 × 48 × 24 × 3,600 and press ENTER. The calculator displays 1.304596316E13. What does this mean? The “E13” portion of the result represents the exponent 13 of ten, so there are a maximum of approximately 1.3 × 10 13 bits of data in that one-hour film. In this section, we review rules of exponents first and then apply them to calculations involving very large or small numbers.

Using the product rule of exponents

Consider the product x 3 x 4 . Both terms have the same base, x , but they are raised to different exponents. Expand each expression, and then rewrite the resulting expression.

x 3 x 4 = x x x 3  factors x x x x 4  factors = x x x x x x x 7  factors = x 7

The result is that x 3 x 4 = x 3 + 4 = x 7 .

Notice that the exponent of the product is the sum of the exponents of the terms. In other words, when multiplying exponential expressions with the same base, we write the result with the common base and add the exponents. This is the product rule of exponents.

a m a n = a m + n

Now consider an example with real numbers.

2 3 2 4 = 2 3 + 4 = 2 7

We can always check that this is true by simplifying each exponential expression. We find that 2 3 is 8, 2 4 is 16, and 2 7 is 128. The product 8 16 equals 128, so the relationship is true. We can use the product rule of exponents to simplify expressions that are a product of two numbers or expressions with the same base but different exponents.

The product rule of exponents

For any real number a and natural numbers m and n , the product rule of exponents states that

a m a n = a m + n

Using the product rule

Write each of the following products with a single base. Do not simplify further.

  1. t 5 t 3
  2. ( −3 ) 5 ( −3 )
  3. x 2 x 5 x 3

Use the product rule to simplify each expression.

  1. t 5 t 3 = t 5 + 3 = t 8
  2. ( −3 ) 5 ( −3 ) = ( −3 ) 5 ( −3 ) 1 = ( −3 ) 5 + 1 = ( −3 ) 6
  3. x 2 x 5 x 3

At first, it may appear that we cannot simplify a product of three factors. However, using the associative property of multiplication, begin by simplifying the first two.

x 2 x 5 x 3 = ( x 2 x 5 ) x 3 = ( x 2 + 5 ) x 3 = x 7 x 3 = x 7 + 3 = x 10

Notice we get the same result by adding the three exponents in one step.

x 2 x 5 x 3 = x 2 + 5 + 3 = x 10
Got questions? Get instant answers now!
Got questions? Get instant answers now!

Questions & Answers

explain the basic method of power of power rule under indices.
Sumo Reply
Why is b in the answer
Dahsolar Reply
how do you work it out?
Brad Reply
answer
Ernest
heheheehe
Nitin
(Pcos∅+qsin∅)/(pcos∅-psin∅)
John Reply
how to do that?
Rosemary Reply
what is it about?
Amoah
how to answer the activity
Chabelita Reply
how to solve the activity
Chabelita
solve for X,,4^X-6(2^)-16=0
Alieu Reply
x4xminus 2
Lominate
sobhan Singh jina uniwarcity tignomatry ka long answers tile questions
harish Reply
t he silly nut company makes two mixtures of nuts: mixture a and mixture b. a pound of mixture a contains 12 oz of peanuts, 3 oz of almonds and 1 oz of cashews and sells for $4. a pound of mixture b contains 12 oz of peanuts, 2 oz of almonds and 2 oz of cashews and sells for $5. the company has 1080
ZAHRO Reply
If  , , are the roots of the equation 3 2 0, x px qx r     Find the value of 1  .
Swetha Reply
Parts of a pole were painted red, blue and yellow. 3/5 of the pole was red and 7/8 was painted blue. What part was painted yellow?
Patrick Reply
Parts of the pole was painted red, blue and yellow. 3 /5 of the pole was red and 7 /8 was painted blue. What part was painted yellow?
Patrick
how I can simplify algebraic expressions
Katleho Reply
Lairene and Mae are joking that their combined ages equal Sam’s age. If Lairene is twice Mae’s age and Sam is 69 yrs old, what are Lairene’s and Mae’s ages?
Mary Reply
23yrs
Yeboah
lairenea's age is 23yrs
ACKA
hy
Katleho
Ello everyone
Katleho
Laurene is 46 yrs and Mae is 23 is
Solomon
hey people
christopher
age does not matter
christopher
solve for X, 4^x-6(2*)-16=0
Alieu
prove`x^3-3x-2cosA=0 (-π<A<=π
Mayank Reply
create a lesson plan about this lesson
Rose Reply
Practice Key Terms 1

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Algebra and trigonometry. OpenStax CNX. Nov 14, 2016 Download for free at https://legacy.cnx.org/content/col11758/1.6
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Algebra and trigonometry' conversation and receive update notifications?

Ask