<< Chapter < Page Chapter >> Page >

The shaded area in the following graph indicates the area to the left of x . This area is represented by the probability P ( X < x ). Normal tables, computers, and calculators provide or calculate the probability P ( X < x ).

This is a normal distribution curve. A value, x, is labeled on the horizontal axis, X. A vertical line extends from point x to the curve, and the area under the curve to the left of x is shaded. The area of this shaded section represents the probability that a value of the variable is less than x.

The area to the right is then P ( X > x ) = 1 – P ( X < x ). Remember, P ( X < x ) = Area to the left of the vertical line through x . P ( X < x ) = 1 – P ( X < x ) = Area to the right of the vertical line through x . P ( X < x ) is the same as P ( X x ) and P ( X > x ) is the same as P ( X x ) for continuous distributions.

Calculations of probabilities

Probabilities are calculated using technology. There are instructions given as necessary for the TI-83+ and TI-84 calculators.

Note

To calculate the probability, use the probability tables provided in [link] without the use of technology. The tables include instructions for how to use them.

If the area to the left is 0.0228, then the area to the right is 1 – 0.0228 = 0.9772.

Got questions? Get instant answers now!

Try it

If the area to the left of x is 0.012, then what is the area to the right?

1 − 0.012 = 0.988

Got questions? Get instant answers now!

The final exam scores in a statistics class were normally distributed with a mean of 63 and a standard deviation of five.

a. Find the probability that a randomly selected student scored more than 65 on the exam.

a. Let X = a score on the final exam. X ~ N (63, 5), where μ = 63 and σ = 5

Draw a graph.

Then, find P ( x >65).

P ( x >65) = 0.3446

This is a normal distribution curve. The peak of the curve coincides with the point 63 on the horizontal axis. The point 65 is also labeled. A vertical line extends from point 65 to the curve. The probability area to the right of 65 is shaded; it is equal to 0.3446.

The probability that any student selected at random scores more than 65 is 0.3446.

Go into 2nd DISTR .
After pressing 2nd DISTR , press 2:normalcdf .

The syntax for the instructions are as follows:

normalcdf(lower value, upper value, mean, standard deviation) For this problem: normalcdf(65,1E99,63,5) = 0.3446. You get 1E99 (= 10 99 ) by pressing 1 , the EE key (a 2nd key) and then 99 . Or, you can enter 10^99 instead. The number 10 99 is way out in the right tail of the normal curve. We are calculating the area between 65 and 10 99 . In some instances, the lower number of the area might be –1E99 (= –10 99 ). The number –10 99 is way out in the left tail of the normal curve.

Historical note

The TI probability program calculates a z -score and then the probability from the z -score. Before technology, the z -score was looked up in a standard normal probability table (because the math involved is too cumbersome) to find the probability. In this example, a standard normal table with area to the left of the z -score was used. You calculate the z -score and look up the area to the left. The probability is the area to the right.

z = 65  – 63 5 = 0.4

Area to the left is 0.6554.

P ( x >65) = P ( z >0.4) = 1 – 0.6554 = 0.3446

Got questions? Get instant answers now!

Calculate the z -score:

*Press 2nd Distr
*Press 3:invNorm (
*Enter the area to the left of z followed by )
*Press ENTER .
For this Example, the steps are
2nd Distr
3:invNorm (.6554) ENTER
The answer is 0.3999 which rounds to 0.4.

b. Find the probability that a randomly selected student scored less than 85.

b. Draw a graph.

Then find P ( x <85), and shade the graph.

Using a computer or calculator, find P ( x <85) = 1.

normalcdf(0,85,63,5) = 1 (rounds to one)

The probability that one student scores less than 85 is approximately one (or 100%).

Got questions? Get instant answers now!

c. Find the 90 th percentile (that is, find the score k that has 90% of the scores below k and 10% of the scores above k ).

c. Find the 90 th percentile. For each problem or part of a problem, draw a new graph. Draw the x -axis. Shade the area that corresponds to the 90 th percentile.

Let k = the 90 th percentile. The variable k is located on the x -axis. P ( x < k ) is the area to the left of k . The 90 th percentile k separates the exam scores into those that are the same or lower than k and those that are the same or higher. Ninety percent of the test scores are the same or lower than k , and ten percent are the same or higher. The variable k is often called a critical value .

k = 69.4

This is a normal distribution curve. The peak of the curve coincides with the point 63 on the horizontal axis. A point, k, is labeled to the right of 63. A vertical line extends from k to the curve. The area under the curve to the left of k is shaded. This represents the probability that x is less than k: P(x < k) = 0.90

The 90 th percentile is 69.4. This means that 90% of the test scores fall at or below 69.4 and 10% fall at or above. To get this answer on the calculator, follow this step:

Got questions? Get instant answers now!

Questions & Answers

if three forces F1.f2 .f3 act at a point on a Cartesian plane in the daigram .....so if the question says write down the x and y components ..... I really don't understand
Syamthanda Reply
hey , can you please explain oxidation reaction & redox ?
Boitumelo Reply
hey , can you please explain oxidation reaction and redox ?
Boitumelo
for grade 12 or grade 11?
Sibulele
the value of V1 and V2
Tumelo Reply
advantages of electrons in a circuit
Rethabile Reply
we're do you find electromagnetism past papers
Ntombifuthi
what a normal force
Tholulwazi Reply
it is the force or component of the force that the surface exert on an object incontact with it and which acts perpendicular to the surface
Sihle
what is physics?
Petrus Reply
what is the half reaction of Potassium and chlorine
Anna Reply
how to calculate coefficient of static friction
Lisa Reply
how to calculate static friction
Lisa
How to calculate a current
Tumelo
how to calculate the magnitude of horizontal component of the applied force
Mogano
How to calculate force
Monambi
a structure of a thermocouple used to measure inner temperature
Anna Reply
a fixed gas of a mass is held at standard pressure temperature of 15 degrees Celsius .Calculate the temperature of the gas in Celsius if the pressure is changed to 2×10 to the power 4
Amahle Reply
How is energy being used in bonding?
Raymond Reply
what is acceleration
Syamthanda Reply
a rate of change in velocity of an object whith respect to time
Khuthadzo
how can we find the moment of torque of a circular object
Kidist
Acceleration is a rate of change in velocity.
Justice
t =r×f
Khuthadzo
how to calculate tension by substitution
Precious Reply
hi
Shongi
hi
Leago
use fnet method. how many obects are being calculated ?
Khuthadzo
khuthadzo hii
Hulisani
how to calculate acceleration and tension force
Lungile Reply
you use Fnet equals ma , newtoms second law formula
Masego
please help me with vectors in two dimensions
Mulaudzi Reply
how to calculate normal force
Mulaudzi
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Introductory statistics. OpenStax CNX. May 06, 2016 Download for free at http://legacy.cnx.org/content/col11562/1.18
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Introductory statistics' conversation and receive update notifications?

Ask