<< Chapter < Page Chapter >> Page >
This module introduces the properties of the exponential distribution, the behavior of probabilities that reflect a large number of small values and a small number of high values.

The exponential distribution is often concerned with the amount of time until some specific event occurs. For example, the amount of time (beginning now) until an earthquake occurs has an exponential distribution. Other examples include the length, in minutes, of long distancebusiness telephone calls, and the amount of time, in months, a car battery lasts. It can be shown, too, that the value of the change that you have in your pocket or purse approximately follows anexponential distribution.

Values for an exponential random variable occur in the following way. There are fewer large values and more small values. For example, the amount of money customers spend in one tripto the supermarket follows an exponential distribution. There are more people that spend less money and fewer people that spend large amounts of money.

The exponential distribution is widely used in the field of reliability. Reliability deals with the amount of time a product lasts.

Illustrates the exponential distribution: Let X = amount of time (in minutes) a postal clerk spends with his/her customer. The time is known to have anexponential distribution with the average amount of time equal to 4 minutes.

X is a continuous random variable since time is measured. It is given that μ = 4 minutes. To do any calculations, you must know m , the decay parameter.

m = 1 μ . Therefore, m = 1 4 = 0.25

The standard deviation, σ , is the same as the mean. μ = σ

The distribution notation is X ~ Exp ( m ) size 12{X "~" ital "Exp" \( m \) } {} . Therefore, X ~ Exp ( 0.25 ) size 12{X "~" ital "Exp" \( m \) } {} .

The probability density function is f ( x ) = m e -m⋅x The number e = 2.71828182846... It is a number that is used often in mathematics. Scientific calculators have the key " e x ." If you enter 1 for x , the calculator will display the value e .

The curve is:

f ( x ) = 0.25 e − 0.25⋅x where x is at least 0 and m = 0.25.

For example, f ( 5 ) = 0.25 e − 0.25⋅5 = 0.072

The graph is as follows:

Exponential graph with increments of 2 from 0-20 on the x-axis of μ = 4 and increments of 0.05 from 0.05-0.25 on the y-axis of m = 0.25. The curved line begins at the top at point (0, 0.25) and curves down to point (20, 0). The x-axis is equal to a continuous random variable.

Notice the graph is a declining curve. When x = 0,

f ( x ) = 0.25 e − 0.25⋅0 = 0.25 1 = 0.25 = m

Find the probability that a clerk spends four to five minutes with a randomly selected customer.

Find P ( 4 x 5 ) .

The cumulative distribution function (CDF) gives the area to the left.

P ( x x ) = 1 - e -m⋅x

P ( x 5 ) = 1 - e -0.25⋅5 = 0.7135 and P ( x 4 ) = 1 - e -0.25⋅4 = 0.6321

Exponential graph with the curved line beginning at point (0, 0.25) and curves down towards point (∞, 0). Two vertical upward lines extend from points 4 and 5 to the curved line. The probability is in the area between points 4 and 5.

You can do these calculations easily on a calculator.

The probability that a postal clerk spends four to five minutes with a randomly selected customer is

P ( 4 x 5 ) = P ( x 5 ) - P ( x 4 ) = 0.7135 0.6321 = 0.0814

TI-83+ and TI-84: On the home screen, enter (1-e^(-.25*5))-(1-e^(-.25*4)) or enter e^(-.25*4)-e^(-.25*5).
Got questions? Get instant answers now!

Half of all customers are finished within how long? (Find the 50th percentile)

Find the 50th percentile.

Exponential graph with the curved line beginning at point (0, 0.25) and curves down towards point (∞, 0). A vertical upward line extends from point k to the curved line. The probability area from 0-k is equal to 0.50.

P ( x k ) 0.50 , k = 2.8 minutes (calculator or computer)

Half of all customers are finished within 2.8 minutes.

You can also do the calculation as follows:

P ( x k ) 0.50 and P ( x k ) = 1 - e -0.25⋅k

Therefore, 0.50 = 1 e −0.25⋅k and e −0.25⋅k = 1 0.50 = 0.5

Take natural logs: ln ( e −0.25⋅k ) = ln ( 0.50 ) . So, −0.25⋅k = ln ( 0.50 )

Solve for k : k = ln(.50) -0.25 = 2.8 minutes

A formula for the percentile k is k = LN(1−AreaToTheLeft) −m where LN is the natural log.
TI-83+ and TI-84: On the home screen, enter LN(1-.50)/-.25. Press the (-) for the negative.
Got questions? Get instant answers now!

Which is larger, the mean or the median?

Is the mean or median larger?

From part b, the median or 50th percentile is 2.8 minutes. The theoretical mean is 4 minutes. The mean is larger.

Got questions? Get instant answers now!
Got questions? Get instant answers now!

Optional collaborative classroom activity

Have each class member count the change he/she has in his/her pocket or purse. Your instructor will record the amounts in dollars and cents. Construct a histogram of the data takenby the class. Use 5 intervals. Draw a smooth curve through the bars. The graph should look approximately exponential. Then calculate the mean.

Let X = the amount of money a student in your class has in his/her pocket or purse.

The distribution for X is approximately exponential with mean, μ = _______ and m = _______. The standard deviation, σ = ________.

Draw the appropriate exponential graph. You should label the x and y axes, the decay rate, and the mean. Shade the area that represents the probability that one student has less than$.40 in his/her pocket or purse. (Shade P ( x 0.40 ) ).

On the average, a certain computer part lasts 10 years. The length of time the computer part lasts is exponentially distributed.

What is the probability that a computer part lasts more than 7 years?

Let x = the amount of time (in years) a computer part lasts.

μ = 10 so m = 1 μ = 1 10 = 0.1

Find P ( x 7 ) . Draw a graph.

P ( x > 7 ) = 1 - P ( x < 7 ) .

Since P ( X x ) = 1 - e -mx then P ( X x ) = 1 - ( 1 - e -m⋅x ) = e -m⋅x

P ( x 7 ) = e -0.1⋅7 = 0.4966 . The probability that a computer part lasts morethan 7 years is 0.4966.

TI-83+ and TI-84: On the home screen, enter e^(-.1*7).

Exponential graph with the curved line beginning at point (0, 0.1) and curves down towards point (∞, 0). A vertical upward line extends from point 1 to the curved line. The probability area occurs from point 1 to the end of the curve. The x-axis is equal to the amount of time a computer part lasts.

Got questions? Get instant answers now!

On the average, how long would 5 computer parts last if they are used one after another?

On the average, 1 computer part lasts 10 years. Therefore, 5 computer parts, if they are used one right after the other would last, on the average,

( 5 ) ( 10 ) = 50 years.

Got questions? Get instant answers now!

Eighty percent of computer parts last at most how long?

Find the 80th percentile. Draw a graph. Let k = the 80th percentile.

Exponential graph with the curved line beginning at point (0, 0.1) and curves down towards point (∞, 0). A vertical upward line extends from point k to the curved line. k is the 80th percentile. The probability area from 0-k is equal to 0.80.

Solve for k : k = ln(1-.80) -0.1 = 16.1 years

Eighty percent of the computer parts last at most 16.1 years.

TI-83+ and TI-84: On the home screen, enter LN(1 - .80)/-.1
Got questions? Get instant answers now!

What is the probability that a computer part lasts between 9 and 11 years?

Find P ( 9 x 11 ) . Draw a graph.

Exponential graph with the curved line beginning at point (0, 0.1) and curves down towards point (∞, 0). Two vertical upward lines extend from point 9 and 11 to the curved line. The probability area occurs between point 9 and 11.

P ( 9 x 11 ) P ( x 11 ) - P ( x 9 ) ( 1 - e −0.1⋅11 ) - ( 1 - e −0.1⋅9 ) = 0.6671 - 0.5934 = 0.0737 . (calculator or computer)

The probability that a computer part lasts between 9 and 11 years is 0.0737.

TI-83+ and TI-84: On the home screen, enter e^(-.1*9) - e^(-.1*11).
Got questions? Get instant answers now!
Got questions? Get instant answers now!

Suppose that the length of a phone call, in minutes, is an exponential random variable with decay parameter = 1 12 . If another person arrives at a public telephone just before you, find the probability that you will have to wait more than 5minutes. Let X = the length of a phone call, in minutes.

What is m , μ , and σ ? The probability that you must wait more than 5 minutes is _______ .

  • m = 1 12
  • μ = 12
  • σ = 12

P ( x  >  5 )  =  0.6592

Got questions? Get instant answers now!
A summary for exponential distribution is available in " Summary of The Uniform and Exponential Probability Distributions ".
Got questions? Get instant answers now!

Questions & Answers

what is microbiology
Agebe Reply
What is a cell
Odelana Reply
what is cell
Mohammed
how does Neisseria cause meningitis
Nyibol Reply
what is microbiologist
Muhammad Reply
what is errata
Muhammad
is the branch of biology that deals with the study of microorganisms.
Ntefuni Reply
What is microbiology
Mercy Reply
studies of microbes
Louisiaste
when we takee the specimen which lumbar,spin,
Ziyad Reply
How bacteria create energy to survive?
Muhamad Reply
Bacteria doesn't produce energy they are dependent upon their substrate in case of lack of nutrients they are able to make spores which helps them to sustain in harsh environments
_Adnan
But not all bacteria make spores, l mean Eukaryotic cells have Mitochondria which acts as powerhouse for them, since bacteria don't have it, what is the substitution for it?
Muhamad
they make spores
Louisiaste
what is sporadic nd endemic, epidemic
Aminu Reply
the significance of food webs for disease transmission
Abreham
food webs brings about an infection as an individual depends on number of diseased foods or carriers dully.
Mark
explain assimilatory nitrate reduction
Esinniobiwa Reply
Assimilatory nitrate reduction is a process that occurs in some microorganisms, such as bacteria and archaea, in which nitrate (NO3-) is reduced to nitrite (NO2-), and then further reduced to ammonia (NH3).
Elkana
This process is called assimilatory nitrate reduction because the nitrogen that is produced is incorporated in the cells of microorganisms where it can be used in the synthesis of amino acids and other nitrogen products
Elkana
Examples of thermophilic organisms
Shu Reply
Give Examples of thermophilic organisms
Shu
advantages of normal Flora to the host
Micheal Reply
Prevent foreign microbes to the host
Abubakar
they provide healthier benefits to their hosts
ayesha
They are friends to host only when Host immune system is strong and become enemies when the host immune system is weakened . very bad relationship!
Mark
what is cell
faisal Reply
cell is the smallest unit of life
Fauziya
cell is the smallest unit of life
Akanni
ok
Innocent
cell is the structural and functional unit of life
Hasan
is the fundamental units of Life
Musa
what are emergency diseases
Micheal Reply
There are nothing like emergency disease but there are some common medical emergency which can occur simultaneously like Bleeding,heart attack,Breathing difficulties,severe pain heart stock.Hope you will get my point .Have a nice day ❣️
_Adnan
define infection ,prevention and control
Innocent
I think infection prevention and control is the avoidance of all things we do that gives out break of infections and promotion of health practices that promote life
Lubega
Heyy Lubega hussein where are u from?
_Adnan
en français
Adama
which site have a normal flora
ESTHER Reply
Many sites of the body have it Skin Nasal cavity Oral cavity Gastro intestinal tract
Safaa
skin
Asiina
skin,Oral,Nasal,GIt
Sadik
How can Commensal can Bacteria change into pathogen?
Sadik
How can Commensal Bacteria change into pathogen?
Sadik
all
Tesfaye
by fussion
Asiina
what are the advantages of normal Flora to the host
Micheal
what are the ways of control and prevention of nosocomial infection in the hospital
Micheal
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 1

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Collaborative statistics. OpenStax CNX. Jul 03, 2012 Download for free at http://cnx.org/content/col10522/1.40
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Collaborative statistics' conversation and receive update notifications?

Ask