<< Chapter < Page | Chapter >> Page > |
One simple graph, the stem-and-leaf graph or stemplot , comes from the field of exploratory data analysis. It is a good choice when the data sets are small. To create the plot, divide each observation of data into a stem and a leaf. The leaf consists of a final significant digit . For example, 23 has stem two and leaf three. The number 432 has stem 43 and leaf two. Likewise, the number 5,432 has stem 543 and leaf two. The decimal 9.3 has stem nine and leaf three. Write the stems in a vertical line from smallest to largest. Draw a vertical line to the right of the stems. Then write the leaves in increasing order next to their corresponding stem.
For Susan Dean's spring pre-calculus class, scores for the first exam were as follows (smallest to largest):
33; 42; 49; 49; 53; 55; 55; 61; 63; 67; 68; 68; 69; 69; 72; 73; 74; 78; 80; 83; 88; 88; 88; 90; 92; 94; 94; 94; 94; 96; 100
Stem | Leaf |
---|---|
3 | 3 |
4 | 2 9 9 |
5 | 3 5 5 |
6 | 1 3 7 8 8 9 9 |
7 | 2 3 4 8 |
8 | 0 3 8 8 8 |
9 | 0 2 4 4 4 4 6 |
10 | 0 |
The stemplot shows that most scores fell in the 60s, 70s, 80s, and 90s. Eight out of the 31 scores or approximately 26% were in the 90s or 100, a fairly high number of As.
For the Park City basketball team, scores for the last 30 games were as follows (smallest to largest):
32; 32; 33; 34; 38; 40; 42; 42; 43; 44; 46; 47; 47; 48; 48; 48; 49; 50; 50; 51; 52; 52; 52; 53; 54; 56; 57; 57; 60; 61
Construct a stem plot for the data.
Stem | Leaf |
---|---|
3 | 2 2 3 4 8 |
4 | 0 2 2 3 4 6 7 7 8 8 8 9 |
5 | 0 0 1 2 2 2 3 4 6 7 7 |
6 | 0 1 |
The stemplot is a quick way to graph data and gives an exact picture of the data. You want to look for an overall pattern and any outliers. An outlier is an observation of data that does not fit the rest of the data. It is sometimes called an extreme value. When you graph an outlier, it will appear not to fit the pattern of the graph. Some outliers are due to mistakes (for example, writing down 50 instead of 500) while others may indicate that something unusual is happening. It takes some background information to explain outliers, so we will cover them in more detail later.
The data are the distances (in kilometers) from a home to local supermarkets. Create a stemplot using the data:
1.1; 1.5; 2.3; 2.5; 2.7; 3.2; 3.3; 3.3; 3.5; 3.8; 4.0; 4.2; 4.5; 4.5; 4.7; 4.8; 5.5; 5.6; 6.5; 6.7; 12.3
Do the data seem to have any concentration of values?
The leaves are to the right of the decimal.
The value 12.3 may be an outlier. Values appear to concentrate at three and four kilometers.
Stem | Leaf |
---|---|
1 | 1 5 |
2 | 3 5 7 |
3 | 2 3 3 5 8 |
4 | 0 2 5 5 7 8 |
5 | 5 6 |
6 | 5 7 |
7 | |
8 | |
9 | |
10 | |
11 | |
12 | 3 |
The following data show the distances (in miles) from the homes of off-campus statistics students to the college. Create a stem plot using the data and identify any outliers:
0.5; 0.7; 1.1; 1.2; 1.2; 1.3; 1.3; 1.5; 1.5; 1.7; 1.7; 1.8; 1.9; 2.0; 2.2; 2.5; 2.6; 2.8; 2.8; 2.8; 3.5; 3.8; 4.4; 4.8; 4.9; 5.2; 5.5; 5.7; 5.8; 8.0
Stem | Leaf |
---|---|
0 | 5 7 |
1 | 1 2 2 3 3 5 5 7 7 8 9 |
2 | 0 2 5 6 8 8 8 |
3 | 5 8 |
4 | 4 8 9 |
5 | 2 5 7 8 |
6 | |
7 | |
8 | 0 |
The value 8.0 may be an outlier. Values appear to concentrate at one and two miles.
A side-by-side stem-and-leaf plot allows a comparison of the two data sets in two columns. In a side-by-side stem-and-leaf plot, two sets of leaves share the same stem. The leaves are to the left and the right of the stems. [link] and [link] show the ages of presidents at their inauguration and at their death. Construct a side-by-side stem-and-leaf plot using this data.
Ages at Inauguration | Ages at Death | |
---|---|---|
9 9 8 7 7 7 6 3 2 | 4 | 6 9 |
8 7 7 7 7 6 6 6 5 5 5 5 4 4 4 4 4 2 1 1 1 1 1 0 | 5 | 3 6 6 7 7 8 |
9 5 4 4 2 1 1 1 0 | 6 | 0 0 3 3 4 4 5 6 7 7 7 8 |
7 | 0 0 1 1 1 4 7 8 8 9 | |
8 | 0 1 3 5 8 | |
9 | 0 0 3 3 |
Notification Switch
Would you like to follow the 'Introductory statistics' conversation and receive update notifications?