<< Chapter < Page Chapter >> Page >

Before we take up the discussion of linear regression and correlation, we need to examine a way to display the relation between two variables x and y . The most common and easiest way is a scatter plot . The following example illustrates a scatter plot.

In Europe and Asia, m-commerce is popular. M-commerce users have special mobile phones that work like electronic wallets as well as provide phone and Internet services. Users can do everything from paying for parking to buying a TV set or soda from a machine to banking to checking sports scores on the Internet. For the years 2000 through 2004, was there a relationship between the year and the number of m-commerce users? Construct a scatter plot. Let x = the year and let y = the number of m-commerce users, in millions.

x (year) y (# of users)
2000 0.5
2002 20.0
2003 33.0
2004 47.0
Table showing the number of m-commerce users (in millions) by year.
This is a scatter plot for the data provided. The x-axis represents the year and the y-axis represents the number of m-commerce users in millions. There are four points plotted, at (2000, 0.5), (2002, 20.0), (2003, 33.0), (2004, 47.0).
Scatter plot showing the number of m-commerce users (in millions) by year.
Got questions? Get instant answers now!
To create a scatter plot:
  1. Enter your X data into list L1 and your Y data into list L2.
  2. Press 2nd STATPLOT ENTER to use Plot 1. On the input screen for PLOT 1, highlight On and press ENTER. (Make sure the other plots are OFF.)
  3. For TYPE: highlight the very first icon, which is the scatter plot, and press ENTER.
  4. For Xlist:, enter L1 ENTER and for Ylist: L2 ENTER.
  5. For Mark: it does not matter which symbol you highlight, but the square is the easiest to see. Press ENTER.
  6. Make sure there are no other equations that could be plotted. Press Y = and clear any equations out.
  7. Press the ZOOM key and then the number 9 (for menu item "ZoomStat") ; the calculator will fit the window to the data. You can press WINDOW to see the scaling of the axes.

Try it

Amelia plays basketball for her high school. She wants to improve to play at the college level. She notices that the number of points she scores in a game goes up in response to the number of hours she practices her jump shot each week. She records the following data:

X (hours practicing jump shot) Y (points scored in a game)
5 15
7 22
9 28
10 31
11 33
12 36

Construct a scatter plot and state if what Amelia thinks appears to be true.

This is a scatter plot for the data provided. The x-axis is labeled in increments of 2 from 0 - 16. The y-axis is labeled in increments of 5 from 0 - 35.

Yes, Amelia’s assumption appears to be correct. The number of points Amelia scores per game goes up when she practices her jump shot more.

Got questions? Get instant answers now!

A scatter plot shows the direction of a relationship between the variables. A clear direction happens when there is either:

  • High values of one variable occurring with high values of the other variable or low values of one variable occurring with low values of the other variable.
  • High values of one variable occurring with low values of the other variable.

You can determine the strength of the relationship by looking at the scatter plot and seeing how close the points are to a line, a power function, an exponential function, or to some other type of function. For a linear relationship there is an exception. Consider a scatter plot where all the points fall on a horizontal line providing a "perfect fit." The horizontal line would in fact show no relationship.

When you look at a scatterplot, you want to notice the overall pattern and any deviations from the pattern. The following scatterplot examples illustrate these concepts.

The first graph is a scatter plot with 6 points plotted. The points form a pattern that moves upward to the right, almost in a straight line. The second graph is a scatter plot with the same 6 points as the first graph. A 7th point is plotted in the top left corner of the quadrant. It falls outside the general pattern set by the other 6 points.
The first graph is a scatter plot with 6 points plotted. The points form a pattern that moves downward to the right, almost in a straight line. The second graph is a scatter plot of 8 points. These points form a general downward pattern, but the point do not align in a tight pattern.
The first graph is a scatter plot of 7 points in an exponential pattern. The pattern of the points begins along the x-axis and curves steeply upward to the right side of the quadrant. The second graph shows a scatter plot with many points scattered everywhere, exhibiting no pattern.

In this chapter, we are interested in scatter plots that show a linear pattern. Linear patterns are quite common. The linear relationship is strong if the points are close to a straight line, except in the case of a horizontal line where there is no relationship. If we think that the points show a linear relationship, we would like to draw a line on the scatter plot. This line can be calculated through a process called linear regression . However, we only calculate a regression line if one of the variables helps to explain or predict the other variable. If x is the independent variable and y the dependent variable, then we can use a regression line to predict y for a given value of x

Chapter review

Scatter plots are particularly helpful graphs when we want to see if there is a linear relationship among data points. They indicate both the direction of the relationship between the x variables and the y variables, and the strength of the relationship. We calculate the strength of the relationship between an independent variable and a dependent variable using linear regression.

Does the scatter plot appear linear? Strong or weak? Positive or negative?

This is a scatterplot with several points plotted in the first quadrant. The points form a clear pattern, moving upward to the right. The points do not line up , but the overall pattern can be modeled with a line.

The data appear to be linear with a strong, positive correlation.

Got questions? Get instant answers now!

Does the scatter plot appear linear? Strong or weak? Positive or negative?

This is a scatterplot with several points plotted in the first quadrant. The points move downward to the right. The overall pattern can be modeled with a line, but the points are widely scattered.
Got questions? Get instant answers now!

Does the scatter plot appear linear? Strong or weak? Positive or negative?

This is a scatter plot with several points plotted all over the first quadrant. There is no pattern.

The data appear to have no correlation.

Got questions? Get instant answers now!

Questions & Answers

A golfer on a fairway is 70 m away from the green, which sits below the level of the fairway by 20 m. If the golfer hits the ball at an angle of 40° with an initial speed of 20 m/s, how close to the green does she come?
Aislinn Reply
cm
tijani
what is titration
John Reply
what is physics
Siyaka Reply
A mouse of mass 200 g falls 100 m down a vertical mine shaft and lands at the bottom with a speed of 8.0 m/s. During its fall, how much work is done on the mouse by air resistance
Jude Reply
Can you compute that for me. Ty
Jude
what is the dimension formula of energy?
David Reply
what is viscosity?
David
what is inorganic
emma Reply
what is chemistry
Youesf Reply
what is inorganic
emma
Chemistry is a branch of science that deals with the study of matter,it composition,it structure and the changes it undergoes
Adjei
please, I'm a physics student and I need help in physics
Adjanou
chemistry could also be understood like the sexual attraction/repulsion of the male and female elements. the reaction varies depending on the energy differences of each given gender. + masculine -female.
Pedro
A ball is thrown straight up.it passes a 2.0m high window 7.50 m off the ground on it path up and takes 1.30 s to go past the window.what was the ball initial velocity
Krampah Reply
2. A sled plus passenger with total mass 50 kg is pulled 20 m across the snow (0.20) at constant velocity by a force directed 25° above the horizontal. Calculate (a) the work of the applied force, (b) the work of friction, and (c) the total work.
Sahid Reply
you have been hired as an espert witness in a court case involving an automobile accident. the accident involved car A of mass 1500kg which crashed into stationary car B of mass 1100kg. the driver of car A applied his brakes 15 m before he skidded and crashed into car B. after the collision, car A s
Samuel Reply
can someone explain to me, an ignorant high school student, why the trend of the graph doesn't follow the fact that the higher frequency a sound wave is, the more power it is, hence, making me think the phons output would follow this general trend?
Joseph Reply
Nevermind i just realied that the graph is the phons output for a person with normal hearing and not just the phons output of the sound waves power, I should read the entire thing next time
Joseph
Follow up question, does anyone know where I can find a graph that accuretly depicts the actual relative "power" output of sound over its frequency instead of just humans hearing
Joseph
"Generation of electrical energy from sound energy | IEEE Conference Publication | IEEE Xplore" ***ieeexplore.ieee.org/document/7150687?reload=true
Ryan
what's motion
Maurice Reply
what are the types of wave
Maurice
answer
Magreth
progressive wave
Magreth
hello friend how are you
Muhammad Reply
fine, how about you?
Mohammed
hi
Mujahid
A string is 3.00 m long with a mass of 5.00 g. The string is held taut with a tension of 500.00 N applied to the string. A pulse is sent down the string. How long does it take the pulse to travel the 3.00 m of the string?
yasuo Reply
Who can show me the full solution in this problem?
Reofrir Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Introductory statistics. OpenStax CNX. May 06, 2016 Download for free at http://legacy.cnx.org/content/col11562/1.18
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Introductory statistics' conversation and receive update notifications?

Ask