<< Chapter < Page Chapter >> Page >

One study indicates that the number of televisions that American families have is distributed (this is the given distribution for the American population) as in [link] .

Number of Televisions Percent
0 10
1 16
2 55
3 11
4+ 8

The table contains expected ( E ) percents.

A random sample of 600 families in the far western United States resulted in the data in [link] .

Number of Televisions Frequency
Total = 600
0 66
1 119
2 340
3 60
4+ 15

The table contains observed ( O ) frequency values.

At the 1% significance level, does it appear that the distribution "number of televisions" of far western United States families is different from the distribution for the American population as a whole?

This problem asks you to test whether the far western United States families distribution fits the distribution of the American families. This test is always right-tailed.

The first table contains expected percentages. To get expected ( E ) frequencies, multiply the percentage by 600. The expected frequencies are shown in [link] .

Number of Televisions Percent Expected Frequency
0 10 (0.10)(600) = 60
1 16 (0.16)(600) = 96
2 55 (0.55)(600) = 330
3 11 (0.11)(600) = 66
over 3 8 (0.08)(600) = 48

Therefore, the expected frequencies are 60, 96, 330, 66, and 48. In the TI calculators, you can let the calculator do the math. For example, instead of 60, enter 0.10*600.

H 0 : The "number of televisions" distribution of far western United States families is the same as the "number of televisions" distribution of the American population.

H a : The "number of televisions" distribution of far western United States families is different from the "number of televisions" distribution of the American population.

Distribution for the test: χ 4 2 where df = (the number of cells) – 1 = 5 – 1 = 4.

Note

df ≠ 600 – 1

Calculate the test statistic: χ 2 = 29.65

Graph:

This is a nonsymmetric chi-square curve with values of 0, 4, and 29.65 labeled on the horizontal axis. The value 4 coincides with the peak of the curve. A vertical upward line extends from 29.65 to the curve, and the region to the right of this line is shaded. The shaded area is equal to the p-value.

Probability statement: p -value = P ( χ 2 >29.65) = 0.000006

Compare α and the p -value:

  • α = 0.01
  • p -value = 0.000006
So, α > p -value.

Make a decision: Since α > p -value, reject H o .

This means you reject the belief that the distribution for the far western states is the same as that of the American population as a whole.

Conclusion: At the 1% significance level, from the data, there is sufficient evidence to conclude that the "number of televisions" distribution for the far western United States is different from the "number of televisions" distribution for the American population as a whole.

Press STAT and ENTER . Make sure to clear lists L1 , L2 , and L3 if they have data in them (see the note at the end of [link] ). Into L1 , put the observed frequencies 66 , 119 , 349 , 60 , 15 . Into L2 , put the expected frequencies .10*600, .16*600 , .55*600 , .11*600 , .08*600 . Arrow over to list L3 and up to the name area "L3" . Enter (L1-L2)^2/L2 and ENTER . Press 2nd QUIT . Press 2nd LIST and arrow over to MATH . Press 5 . You should see "sum" (Enter L3) . Rounded to 2 decimal places, you should see 29.65 . Press 2nd DISTR . Press 7 or Arrow down to 7:χ2cdf and press ENTER . Enter (29.65,1E99,4) . Rounded to four places, you should see 5.77E-6 = .000006 (rounded to six decimal places), which is the p-value.

The newer TI-84 calculators have in STAT TESTS the test Chi2 GOF . To run the test, put the observed values (the data) into a first list and the expected values (the values you expect if the null hypothesis is true) into a second list. Press STAT TESTS and Chi2 GOF . Enter the list names for the Observed list and the Expected list. Enter the degrees of freedom and press calculate or draw . Make sure you clear any lists before you start.

Got questions? Get instant answers now!

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Introductory statistics. OpenStax CNX. May 06, 2016 Download for free at http://legacy.cnx.org/content/col11562/1.18
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Introductory statistics' conversation and receive update notifications?

Ask