<< Chapter < Page Chapter >> Page >

Do the graphs of all direct variation equations look like [link] ?

No. Direct variation equations are power functions—they may be linear, quadratic, cubic, quartic, radical, etc. But all of the graphs pass through ( 0,0 ) .

The quantity y varies directly with the square of x . If y = 24 when x = 3 , find y when x is 4.

128 3

Got questions? Get instant answers now!

Solving inverse variation problems

Water temperature in an ocean varies inversely to the water’s depth. Between the depths of 250 feet and 500 feet, the formula T = 14,000 d gives us the temperature in degrees Fahrenheit at a depth in feet below Earth’s surface. Consider the Atlantic Ocean, which covers 22% of Earth’s surface. At a certain location, at the depth of 500 feet, the temperature may be 28°F.

If we create [link] , we observe that, as the depth increases, the water temperature decreases.

d , depth T = 14,000 d Interpretation
500 ft 14,000 500 = 28 At a depth of 500 ft, the water temperature is 28° F.
350 ft 14,000 350 = 40 At a depth of 350 ft, the water temperature is 40° F.
250 ft 14,000 250 = 56 At a depth of 250 ft, the water temperature is 56° F.

We notice in the relationship between these variables that, as one quantity increases, the other decreases. The two quantities are said to be inversely proportional and each term varies inversely with the other. Inversely proportional relationships are also called inverse variations .

For our example, [link] depicts the inverse variation    . We say the water temperature varies inversely with the depth of the water because, as the depth increases, the temperature decreases. The formula y = k x for inverse variation in this case uses k = 14,000.

Graph of y=(14000)/x where the horizontal axis is labeled, “Depth, d (ft)”, and the vertical axis is labeled, “Temperature, T (Degrees Fahrenheit)”.

Inverse variation

If x and y are related by an equation of the form

y = k x n

where k is a nonzero constant, then we say that y varies inversely    with the n th power of x . In inversely proportional    relationships, or inverse variations , there is a constant multiple k = x n y .

Writing a formula for an inversely proportional relationship

A tourist plans to drive 100 miles. Find a formula for the time the trip will take as a function of the speed the tourist drives.

Recall that multiplying speed by time gives distance. If we let t represent the drive time in hours, and v represent the velocity (speed or rate) at which the tourist drives, then v t = distance . Because the distance is fixed at 100 miles, v t = 100. Solving this relationship for the time gives us our function.

t ( v ) = 100 v        = 100 v 1

We can see that the constant of variation is 100 and, although we can write the relationship using the negative exponent, it is more common to see it written as a fraction.

Got questions? Get instant answers now!
Got questions? Get instant answers now!

Given a description of an indirect variation problem, solve for an unknown.

  1. Identify the input, x , and the output, y .
  2. Determine the constant of variation. You may need to multiply y by the specified power of x to determine the constant of variation.
  3. Use the constant of variation to write an equation for the relationship.
  4. Substitute known values into the equation to find the unknown.

Solving an inverse variation problem

A quantity y varies inversely with the cube of x . If y = 25 when x = 2 , find y when x is 6.

The general formula for inverse variation with a cube is y = k x 3 . The constant can be found by multiplying y by the cube of x .

k = x 3 y    = 2 3 25    = 200

Now we use the constant to write an equation that represents this relationship.

y = k x 3 , k = 200 y = 200 x 3

Substitute x = 6 and solve for y .

y = 200 6 3    = 25 27
Got questions? Get instant answers now!
Got questions? Get instant answers now!

Questions & Answers

A golfer on a fairway is 70 m away from the green, which sits below the level of the fairway by 20 m. If the golfer hits the ball at an angle of 40° with an initial speed of 20 m/s, how close to the green does she come?
Aislinn Reply
cm
tijani
what is titration
John Reply
what is physics
Siyaka Reply
A mouse of mass 200 g falls 100 m down a vertical mine shaft and lands at the bottom with a speed of 8.0 m/s. During its fall, how much work is done on the mouse by air resistance
Jude Reply
Can you compute that for me. Ty
Jude
what is the dimension formula of energy?
David Reply
what is viscosity?
David
what is inorganic
emma Reply
what is chemistry
Youesf Reply
what is inorganic
emma
Chemistry is a branch of science that deals with the study of matter,it composition,it structure and the changes it undergoes
Adjei
please, I'm a physics student and I need help in physics
Adjanou
chemistry could also be understood like the sexual attraction/repulsion of the male and female elements. the reaction varies depending on the energy differences of each given gender. + masculine -female.
Pedro
A ball is thrown straight up.it passes a 2.0m high window 7.50 m off the ground on it path up and takes 1.30 s to go past the window.what was the ball initial velocity
Krampah Reply
2. A sled plus passenger with total mass 50 kg is pulled 20 m across the snow (0.20) at constant velocity by a force directed 25° above the horizontal. Calculate (a) the work of the applied force, (b) the work of friction, and (c) the total work.
Sahid Reply
you have been hired as an espert witness in a court case involving an automobile accident. the accident involved car A of mass 1500kg which crashed into stationary car B of mass 1100kg. the driver of car A applied his brakes 15 m before he skidded and crashed into car B. after the collision, car A s
Samuel Reply
can someone explain to me, an ignorant high school student, why the trend of the graph doesn't follow the fact that the higher frequency a sound wave is, the more power it is, hence, making me think the phons output would follow this general trend?
Joseph Reply
Nevermind i just realied that the graph is the phons output for a person with normal hearing and not just the phons output of the sound waves power, I should read the entire thing next time
Joseph
Follow up question, does anyone know where I can find a graph that accuretly depicts the actual relative "power" output of sound over its frequency instead of just humans hearing
Joseph
"Generation of electrical energy from sound energy | IEEE Conference Publication | IEEE Xplore" ***ieeexplore.ieee.org/document/7150687?reload=true
Ryan
what's motion
Maurice Reply
what are the types of wave
Maurice
answer
Magreth
progressive wave
Magreth
hello friend how are you
Muhammad Reply
fine, how about you?
Mohammed
hi
Mujahid
A string is 3.00 m long with a mass of 5.00 g. The string is held taut with a tension of 500.00 N applied to the string. A pulse is sent down the string. How long does it take the pulse to travel the 3.00 m of the string?
yasuo Reply
Who can show me the full solution in this problem?
Reofrir Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 7

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Precalculus. OpenStax CNX. Jan 19, 2016 Download for free at https://legacy.cnx.org/content/col11667/1.6
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Precalculus' conversation and receive update notifications?

Ask