<< Chapter < Page Chapter >> Page >

Identifying discontinuities

Identify all discontinuities for the following functions as either a jump or a removable discontinuity.

  1. f ( x ) = x 2 2 x 15 x 5
  2. g ( x ) = { x + 1 , x < 2 x , x 2
  1. Notice that the function is defined everywhere except at x = 5.

    Thus, f ( 5 ) does not exist, Condition 2 is not satisfied. Since Condition 1 is satisfied, the limit as x approaches 5 is 8, and Condition 2 is not satisfied.This means there is a removable discontinuity at x = 5.

  2. Condition 2 is satisfied because g ( 2 ) = 2.

    Notice that the function is a piecewise function    , and for each piece, the function is defined everywhere on its domain. Let’s examine Condition 1 by determining the left- and right-hand limits as x approaches 2.

    Left-hand limit: lim x 2 ( x + 1 ) = 2 + 1 = 3. The left-hand limit exists.

    Right-hand limit: lim x 2 + ( x ) = 2. The right-hand limit exists. But

    lim x 2 f ( x ) lim x 2 + f ( x ) .

    So, lim x 2 f ( x ) does not exist, and Condition 2 fails: There is no removable discontinuity. However, since both left- and right-hand limits exist but are not equal, the conditions are satisfied for a jump discontinuity at x = 2.

Got questions? Get instant answers now!
Got questions? Get instant answers now!

Identify all discontinuities for the following functions as either a jump or a removable discontinuity.

  1. f ( x ) = x 2 6 x x 6
  2. g ( x ) = { x , 0 x < 4 2 x , x 4
  1. removable discontinuity at x = 6 ;
  2. jump discontinuity at x = 4
Got questions? Get instant answers now!

Recognizing continuous and discontinuous real-number functions

Many of the functions we have encountered in earlier chapters are continuous everywhere. They never have a hole in them, and they never jump from one value to the next. For all of these functions, the limit of f ( x ) as x approaches a is the same as the value of f ( x ) when x = a . So lim x a f ( x ) = f ( a ) . There are some functions that are continuous everywhere and some that are only continuous where they are defined on their domain because they are not defined for all real numbers.

Examples of continuous functions

The following functions are continuous everywhere:

Polynomial functions Ex: f ( x ) = x 4 9 x 2
Exponential functions Ex: f ( x ) = 4 x + 2 5
Sine functions Ex: f ( x ) = sin ( 2 x ) 4
Cosine functions Ex: f ( x ) = cos ( x + π 3 )

The following functions are continuous everywhere they are defined on their domain:

Logarithmic functions Ex: f ( x ) = 2 ln ( x ) , x > 0
Tangent functions Ex: f ( x ) = tan ( x ) + 2 , x π 2 + k π , k is an integer
Rational functions Ex: f ( x ) = x 2 25 x 7 , x 7

Given a function f ( x ) , determine if the function is continuous at x = a .

  1. Check Condition 1: f ( a ) exists.
  2. Check Condition 2: lim x a f ( x ) exists at x = a .
  3. Check Condition 3: lim x a f ( x ) = f ( a ) .
  4. If all three conditions are satisfied, the function is continuous at x = a . If any one of the conditions is not satisfied, the function is not continuous at x = a .

Determining whether a piecewise function is continuous at a given number

Determine whether the function f ( x ) = { 4 x , x 3 8 + x , x > 3 is continuous at

  1. x = 3
  2. x = 8 3

To determine if the function f is continuous at x = a , we will determine if the three conditions of continuity are satisfied at x = a .

  1. Condition 1: Does f ( a ) exist?

    f ( 3 ) = 4 ( 3 ) = 12 Condition 1 is satisfied .

    Condition 2: Does lim x 3 f ( x ) exist?

    To the left of x = 3 , f ( x ) = 4 x ; to the right of x = 3 , f ( x ) = 8 + x . We need to evaluate the left- and right-hand limits as x approaches 1.

    • Left-hand limit: lim x 3 f ( x ) = lim x 3 4 ( 3 ) = 12
    • Right-hand limit: lim x 3 + f ( x ) = lim x 3 + ( 8 + x ) = 8 + 3 = 11

    Because lim x 1 f ( x ) lim x 1 + f ( x ) , lim x 1 f ( x ) does not exist.

     Condition 2 fails .

    There is no need to proceed further. Condition 2 fails at x = 3. If any of the conditions of continuity are not satisfied at x = 3 , the function f ( x ) is not continuous at x = 3.

  2. x = 8 3

    Condition 1: Does f ( 8 3 ) exist?

    f ( 8 3 ) = 4 ( 8 3 ) = 32 3 Condition 1 is satisfied .

    Condition 2: Does lim x 8 3 f ( x ) exist?

    To the left of x = 8 3 , f ( x ) = 4 x ; to the right of x = 8 3 , f ( x ) = 8 + x . We need to evaluate the left- and right-hand limits as x approaches 8 3 .

    • Left-hand limit: lim x 8 3 f ( x ) = lim x 8 3 4 ( 8 3 ) = 32 3
    • Right-hand limit: lim x 8 3 + f ( x ) = lim x 8 3 + ( 8 + x ) = 8 + 8 3 = 32 3

    Because lim x 8 3 f ( x ) exists,

    Condition 2 is satisfied .

    Condition 3: Is f ( 8 3 ) = lim x 8 3 f ( x ) ?

    f ( 32 3 ) = 32 3 = lim x 8 3 f ( x ) Condition 3 is satisfied .

    Because all three conditions of continuity are satisfied at x = 8 3 , the function f ( x ) is continuous at x = 8 3 .

Got questions? Get instant answers now!
Got questions? Get instant answers now!

Questions & Answers

A golfer on a fairway is 70 m away from the green, which sits below the level of the fairway by 20 m. If the golfer hits the ball at an angle of 40° with an initial speed of 20 m/s, how close to the green does she come?
Aislinn Reply
cm
tijani
what is titration
John Reply
what is physics
Siyaka Reply
A mouse of mass 200 g falls 100 m down a vertical mine shaft and lands at the bottom with a speed of 8.0 m/s. During its fall, how much work is done on the mouse by air resistance
Jude Reply
Can you compute that for me. Ty
Jude
what is the dimension formula of energy?
David Reply
what is viscosity?
David
what is inorganic
emma Reply
what is chemistry
Youesf Reply
what is inorganic
emma
Chemistry is a branch of science that deals with the study of matter,it composition,it structure and the changes it undergoes
Adjei
please, I'm a physics student and I need help in physics
Adjanou
chemistry could also be understood like the sexual attraction/repulsion of the male and female elements. the reaction varies depending on the energy differences of each given gender. + masculine -female.
Pedro
A ball is thrown straight up.it passes a 2.0m high window 7.50 m off the ground on it path up and takes 1.30 s to go past the window.what was the ball initial velocity
Krampah Reply
2. A sled plus passenger with total mass 50 kg is pulled 20 m across the snow (0.20) at constant velocity by a force directed 25° above the horizontal. Calculate (a) the work of the applied force, (b) the work of friction, and (c) the total work.
Sahid Reply
you have been hired as an espert witness in a court case involving an automobile accident. the accident involved car A of mass 1500kg which crashed into stationary car B of mass 1100kg. the driver of car A applied his brakes 15 m before he skidded and crashed into car B. after the collision, car A s
Samuel Reply
can someone explain to me, an ignorant high school student, why the trend of the graph doesn't follow the fact that the higher frequency a sound wave is, the more power it is, hence, making me think the phons output would follow this general trend?
Joseph Reply
Nevermind i just realied that the graph is the phons output for a person with normal hearing and not just the phons output of the sound waves power, I should read the entire thing next time
Joseph
Follow up question, does anyone know where I can find a graph that accuretly depicts the actual relative "power" output of sound over its frequency instead of just humans hearing
Joseph
"Generation of electrical energy from sound energy | IEEE Conference Publication | IEEE Xplore" ***ieeexplore.ieee.org/document/7150687?reload=true
Ryan
what's motion
Maurice Reply
what are the types of wave
Maurice
answer
Magreth
progressive wave
Magreth
hello friend how are you
Muhammad Reply
fine, how about you?
Mohammed
hi
Mujahid
A string is 3.00 m long with a mass of 5.00 g. The string is held taut with a tension of 500.00 N applied to the string. A pulse is sent down the string. How long does it take the pulse to travel the 3.00 m of the string?
yasuo Reply
Who can show me the full solution in this problem?
Reofrir Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 4

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Precalculus. OpenStax CNX. Jan 19, 2016 Download for free at https://legacy.cnx.org/content/col11667/1.6
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Precalculus' conversation and receive update notifications?

Ask