<< Chapter < Page Chapter >> Page >

Drawing a vector with the given criteria and its equivalent position vector

Find the position vector given that vector v has an initial point at ( 3 , 2 ) and a terminal point at ( 4 , 5 ) , then graph both vectors in the same plane.

The position vector is found using the following calculation:

v = 4 ( 3 ) , 5 2    = 7 , 3

Thus, the position vector begins at ( 0 , 0 ) and terminates at ( 7 , 3 ) . See [link] .

Plot of the two given vectors their same position vector.
Got questions? Get instant answers now!
Got questions? Get instant answers now!

Draw a vector v that connects from the origin to the point ( 3 , 5 ) .

A vector from the origin to (3,5) - a line with an arrow at the (3,5) endpoint.
Got questions? Get instant answers now!

Finding magnitude and direction

To work with a vector, we need to be able to find its magnitude and its direction. We find its magnitude using the Pythagorean Theorem or the distance formula, and we find its direction using the inverse tangent function.

Magnitude and direction of a vector

Given a position vector v = a , b , the magnitude is found by | v | = a 2 + b 2 . The direction is equal to the angle formed with the x -axis, or with the y -axis, depending on the application. For a position vector, the direction is found by tan θ = ( b a ) θ = tan 1 ( b a ) , as illustrated in [link] .

Standard plot of a position vector (a,b) with magnitude |v| extending into Q1 at theta degrees.

Two vectors v and u are considered equal if they have the same magnitude and the same direction. Additionally, if both vectors have the same position vector, they are equal.

Finding the magnitude and direction of a vector

Find the magnitude and direction of the vector with initial point P ( 8 , 1 ) and terminal point Q ( 2 , 5 ) . Draw the vector.

First, find the position vector .

u = −2 , ( −8 ) , −5 −1    = 6 , 6

We use the Pythagorean Theorem to find the magnitude.

| u | = ( 6 ) 2 + ( 6 ) 2 = 72 = 6 2

The direction is given as

tan θ = −6 6 = −1 θ = tan −1 ( −1 ) = 45°

However, the angle terminates in the fourth quadrant, so we add 360° to obtain a positive angle. Thus, 45° + 360° = 315° . See [link] .

Plot of the position vector extending into Q4 from the origin with the magnitude 6rad2.
Got questions? Get instant answers now!
Got questions? Get instant answers now!

Showing that two vectors are equal

Show that vector v with initial point    at ( 5 , −3 ) and terminal point    at ( −1 , 2 ) is equal to vector u with initial point at ( −1 , −3 ) and terminal point at ( −7 , 2 ) . Draw the position vector on the same grid as v and u . Next, find the magnitude and direction of each vector.

As shown in [link] , draw the vector v starting at initial ( 5 , −3 ) and terminal point ( −1 , 2 ) . Draw the vector u with initial point ( −1 , −3 ) and terminal point ( −7 , 2 ) . Find the standard position for each.

Next, find and sketch the position vector for v and u . We have

v = −1 5 , 2 ( 3 )    = −6 , 5 u = −7 ( −1 ) , 2 ( −3 )    = −6 , 5

Since the position vectors are the same, v and u are the same.

An alternative way to check for vector equality is to show that the magnitude and direction are the same for both vectors. To show that the magnitudes are equal, use the Pythagorean Theorem.

| v | = ( −1 5 ) 2 + ( 2 ( −3 ) ) 2 = ( −6 ) 2 + ( 5 ) 2 = 36 + 25 = 61 | u | = ( −7 ( −1 ) ) 2 + ( 2 ( −3 ) ) 2 = ( −6 ) 2 + ( 5 ) 2 = 36 + 25 = 61

As the magnitudes are equal, we now need to verify the direction. Using the tangent function with the position vector gives

tan θ = 5 6 θ = tan 1 ( 5 6 ) = 39.8°

However, we can see that the position vector terminates in the second quadrant, so we add 180° . Thus, the direction is 39.8° + 180° = 140.2° .

Plot of the two given vectors their same position vector.
Got questions? Get instant answers now!
Got questions? Get instant answers now!

Performing vector addition and scalar multiplication

Now that we understand the properties of vectors, we can perform operations involving them. While it is convenient to think of the vector u = x , y as an arrow or directed line segment from the origin to the point ( x , y ) , vectors can be situated anywhere in the plane. The sum of two vectors u and v , or vector addition    , produces a third vector u + v , the resultant    vector.

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Precalculus. OpenStax CNX. Jan 19, 2016 Download for free at https://legacy.cnx.org/content/col11667/1.6
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Precalculus' conversation and receive update notifications?

Ask