<< Chapter < Page Chapter >> Page >

Plotting a complex number on the complex plane

We cannot plot complex numbers on a number line as we might real numbers. However, we can still represent them graphically. To represent a complex number we need to address the two components of the number. We use the complex plane    , which is a coordinate system in which the horizontal axis represents the real component and the vertical axis represents the imaginary component. Complex numbers are the points on the plane, expressed as ordered pairs ( a , b ) , where a represents the coordinate for the horizontal axis and b represents the coordinate for the vertical axis.

Let’s consider the number −2 + 3 i . The real part of the complex number is −2 and the imaginary part is 3 i . We plot the ordered pair ( −2 , 3 ) to represent the complex number −2 + 3 i as shown in [link] .

Plot of a complex number, -2 + 3i. Note that the real part (-2) is plotted on the x-axis and the imaginary part (3i) is plotted on the y-axis.

Complex plane

In the complex plane , the horizontal axis is the real axis, and the vertical axis is the imaginary axis as shown in [link] .

The complex plane showing that the horizontal axis (in the real plane, the x-axis) is known as the real axis and the vertical axis (in the real plane, the y-axis) is known as the imaginary axis.

Given a complex number, represent its components on the complex plane.

  1. Determine the real part and the imaginary part of the complex number.
  2. Move along the horizontal axis to show the real part of the number.
  3. Move parallel to the vertical axis to show the imaginary part of the number.
  4. Plot the point.

Plotting a complex number on the complex plane

Plot the complex number 3 4 i on the complex plane.

The real part of the complex number is 3 , and the imaginary part is −4 i . We plot the ordered pair ( 3 , −4 ) as shown in [link] .

Plot of a complex number, 3 - 4i. Note that the real part (3) is plotted on the x-axis and the imaginary part (-4i) is plotted on the y-axis.
Got questions? Get instant answers now!
Got questions? Get instant answers now!

Plot the complex number −4 i on the complex plane.

Graph of the plotted point, -4-i.
Got questions? Get instant answers now!

Adding and subtracting complex numbers

Just as with real numbers, we can perform arithmetic operations on complex numbers. To add or subtract complex numbers, we combine the real parts and combine the imaginary parts.

Complex numbers: addition and subtraction

Adding complex numbers:

( a + b i ) + ( c + d i ) = ( a + c ) + ( b + d ) i

Subtracting complex numbers:

( a + b i ) ( c + d i ) = ( a c ) + ( b d ) i

Given two complex numbers, find the sum or difference.

  1. Identify the real and imaginary parts of each number.
  2. Add or subtract the real parts.
  3. Add or subtract the imaginary parts.

Adding complex numbers

Add 3 4 i and 2 + 5 i .

We add the real parts and add the imaginary parts.

( a + b i ) + ( c + d i ) = ( a + c ) + ( b + d ) i ( 3 4 i ) + ( 2 + 5 i ) = ( 3 + 2 ) + ( 4 + 5 ) i                               = 5 + i
Got questions? Get instant answers now!
Got questions? Get instant answers now!

Subtract 2 + 5 i from 3 4 i .

( 3 4 i ) ( 2 + 5 i ) = 1 9 i

Got questions? Get instant answers now!

Multiplying complex numbers

Multiplying complex numbers is much like multiplying binomials. The major difference is that we work with the real and imaginary parts separately.

Multiplying a complex numbers by a real number

Let’s begin by multiplying a complex number by a real number. We distribute the real number just as we would with a binomial. So, for example,

Showing how distribution works for complex numbers. For 3(6+2i), 3 is multiplied to both the real and imaginary parts. So we have (3)(6)+(3)(2i) = 18 + 6i.

Given a complex number and a real number, multiply to find the product.

  1. Use the distributive property.
  2. Simplify.

Multiplying a complex number by a real number

Find the product 4 ( 2 + 5 i ) .

Distribute the 4.

4 ( 2 + 5 i ) = ( 4 2 ) + ( 4 5 i ) = 8 + 20 i
Got questions? Get instant answers now!
Got questions? Get instant answers now!

Find the product 4 ( 2 + 6 i ) .

8 24 i

Got questions? Get instant answers now!

Questions & Answers

A golfer on a fairway is 70 m away from the green, which sits below the level of the fairway by 20 m. If the golfer hits the ball at an angle of 40° with an initial speed of 20 m/s, how close to the green does she come?
Aislinn Reply
cm
tijani
what is titration
John Reply
what is physics
Siyaka Reply
A mouse of mass 200 g falls 100 m down a vertical mine shaft and lands at the bottom with a speed of 8.0 m/s. During its fall, how much work is done on the mouse by air resistance
Jude Reply
Can you compute that for me. Ty
Jude
what is the dimension formula of energy?
David Reply
what is viscosity?
David
what is inorganic
emma Reply
what is chemistry
Youesf Reply
what is inorganic
emma
Chemistry is a branch of science that deals with the study of matter,it composition,it structure and the changes it undergoes
Adjei
please, I'm a physics student and I need help in physics
Adjanou
chemistry could also be understood like the sexual attraction/repulsion of the male and female elements. the reaction varies depending on the energy differences of each given gender. + masculine -female.
Pedro
A ball is thrown straight up.it passes a 2.0m high window 7.50 m off the ground on it path up and takes 1.30 s to go past the window.what was the ball initial velocity
Krampah Reply
2. A sled plus passenger with total mass 50 kg is pulled 20 m across the snow (0.20) at constant velocity by a force directed 25° above the horizontal. Calculate (a) the work of the applied force, (b) the work of friction, and (c) the total work.
Sahid Reply
you have been hired as an espert witness in a court case involving an automobile accident. the accident involved car A of mass 1500kg which crashed into stationary car B of mass 1100kg. the driver of car A applied his brakes 15 m before he skidded and crashed into car B. after the collision, car A s
Samuel Reply
can someone explain to me, an ignorant high school student, why the trend of the graph doesn't follow the fact that the higher frequency a sound wave is, the more power it is, hence, making me think the phons output would follow this general trend?
Joseph Reply
Nevermind i just realied that the graph is the phons output for a person with normal hearing and not just the phons output of the sound waves power, I should read the entire thing next time
Joseph
Follow up question, does anyone know where I can find a graph that accuretly depicts the actual relative "power" output of sound over its frequency instead of just humans hearing
Joseph
"Generation of electrical energy from sound energy | IEEE Conference Publication | IEEE Xplore" ***ieeexplore.ieee.org/document/7150687?reload=true
Ryan
what's motion
Maurice Reply
what are the types of wave
Maurice
answer
Magreth
progressive wave
Magreth
hello friend how are you
Muhammad Reply
fine, how about you?
Mohammed
hi
Mujahid
A string is 3.00 m long with a mass of 5.00 g. The string is held taut with a tension of 500.00 N applied to the string. A pulse is sent down the string. How long does it take the pulse to travel the 3.00 m of the string?
yasuo Reply
Who can show me the full solution in this problem?
Reofrir Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 4

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Precalculus. OpenStax CNX. Jan 19, 2016 Download for free at https://legacy.cnx.org/content/col11667/1.6
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Precalculus' conversation and receive update notifications?

Ask