<< Chapter < Page Chapter >> Page >

Rewriting a trigonometric expression using the difference of squares

Rewrite the trigonometric expression: 4 cos 2 θ 1.

Notice that both the coefficient and the trigonometric expression in the first term are squared, and the square of the number 1 is 1. This is the difference of squares. Thus,

4 cos 2 θ 1 = ( 2 cos θ ) 2 1                    = ( 2 cos θ 1 ) ( 2 cos θ + 1 )
Got questions? Get instant answers now!
Got questions? Get instant answers now!

Rewrite the trigonometric expression: 25 9 sin 2 θ .

This is a difference of squares formula: 25 9 sin 2 θ = ( 5 3 sin θ ) ( 5 + 3 sin θ ) .

Got questions? Get instant answers now!

Simplify by rewriting and using substitution

Simplify the expression by rewriting and using identities:

csc 2 θ cot 2 θ

We can start with the Pythagorean identity.

1 + cot 2 θ = csc 2 θ

Now we can simplify by substituting 1 + cot 2 θ for csc 2 θ . We have

csc 2 θ cot 2 θ = 1 + cot 2 θ cot 2 θ                         = 1
Got questions? Get instant answers now!
Got questions? Get instant answers now!

Use algebraic techniques to verify the identity: cos θ 1 + sin θ = 1 sin θ cos θ .

(Hint: Multiply the numerator and denominator on the left side by 1 sin θ . )

cos θ 1 + sin θ ( 1 sin θ 1 sin θ ) = cos θ ( 1 sin θ ) 1 sin 2 θ                                 = cos θ ( 1 sin θ ) cos 2 θ                                 = 1 sin θ cos θ
Got questions? Get instant answers now!

Access these online resources for additional instruction and practice with the fundamental trigonometric identities.

Key equations

Pythagorean identities sin 2 θ + cos 2 θ = 1 1 + cot 2 θ = csc 2 θ 1 + tan 2 θ = sec 2 θ
Even-odd identities tan ( θ ) = tan θ cot ( θ ) = cot θ sin ( θ ) = sin θ csc ( θ ) = csc θ cos ( θ ) = cos θ sec ( θ ) = sec θ
Reciprocal identities sin θ = 1 csc θ cos θ = 1 sec θ tan θ = 1 cot θ csc θ = 1 sin θ sec θ = 1 cos θ cot θ = 1 tan θ
Quotient identities tan θ = sin θ cos θ cot θ = cos θ sin θ

Key concepts

  • There are multiple ways to represent a trigonometric expression. Verifying the identities illustrates how expressions can be rewritten to simplify a problem.
  • Graphing both sides of an identity will verify it. See [link] .
  • Simplifying one side of the equation to equal the other side is another method for verifying an identity. See [link] and [link] .
  • The approach to verifying an identity depends on the nature of the identity. It is often useful to begin on the more complex side of the equation. See [link] .
  • We can create an identity by simplifying an expression and then verifying it. See [link] .
  • Verifying an identity may involve algebra with the fundamental identities. See [link] and [link] .
  • Algebraic techniques can be used to simplify trigonometric expressions. We use algebraic techniques throughout this text, as they consist of the fundamental rules of mathematics. See [link] , [link] , and [link] .

Section exercises

Verbal

We know g ( x ) = cos x is an even function, and f ( x ) = sin x and h ( x ) = tan x are odd functions. What about G ( x ) = cos 2 x , F ( x ) = sin 2 x , and H ( x ) = tan 2 x ? Are they even, odd, or neither? Why?

All three functions, F , G , and H , are even.

This is because F ( x ) = sin ( x ) sin ( x ) = ( sin x ) ( sin x ) = sin 2 x = F ( x ) , G ( x ) = cos ( x ) cos ( x ) = cos x cos x = cos 2 x = G ( x ) and H ( x ) = tan ( x ) tan ( x ) = ( tan x ) ( tan x ) = tan 2 x = H ( x ) .

Got questions? Get instant answers now!

Examine the graph of f ( x ) = sec x on the interval [ π , π ] . How can we tell whether the function is even or odd by only observing the graph of f ( x ) = sec x ?

Got questions? Get instant answers now!

After examining the reciprocal identity for sec t , explain why the function is undefined at certain points.

When cos t = 0 , then sec t = 1 0 , which is undefined.

Got questions? Get instant answers now!

All of the Pythagorean identities are related. Describe how to manipulate the equations to get from sin 2 t + cos 2 t = 1 to the other forms.

Got questions? Get instant answers now!

Algebraic

For the following exercises, use the fundamental identities to fully simplify the expression.

sin x cos x sec x

sin x

Got questions? Get instant answers now!

sin ( x ) cos ( x ) csc ( x )

Got questions? Get instant answers now!

tan x sin x + sec x cos 2 x

sec x

Got questions? Get instant answers now!

csc x + cos x cot ( x )

Got questions? Get instant answers now!

cot t + tan t sec ( t )

csc t

Got questions? Get instant answers now!

3 sin 3 t csc t + cos 2 t + 2 cos ( t ) cos t

Got questions? Get instant answers now!

tan ( x ) cot ( x )

−1

Got questions? Get instant answers now!

sin ( x ) cos x sec x csc x tan x cot x

Got questions? Get instant answers now!

1 + tan 2 θ csc 2 θ + sin 2 θ + 1 sec 2 θ

sec 2 x

Got questions? Get instant answers now!

( tan x csc 2 x + tan x sec 2 x ) ( 1 + tan x 1 + cot x ) 1 cos 2 x

Got questions? Get instant answers now!

1 cos 2 x tan 2 x + 2 sin 2 x

sin 2 x + 1

Got questions? Get instant answers now!

For the following exercises, simplify the first trigonometric expression by writing the simplified form in terms of the second expression.

tan x + cot x csc x ; cos x

Got questions? Get instant answers now!

sec x + csc x 1 + tan x ; sin x

1 sin x

Got questions? Get instant answers now!

cos x 1 + sin x + tan x ; cos x

Got questions? Get instant answers now!

1 sin x cos x cot x ; cot x

1 cot x

Got questions? Get instant answers now!

1 1 cos x cos x 1 + cos x ; csc x

Got questions? Get instant answers now!

( sec x + csc x ) ( sin x + cos x ) 2 cot x ; tan x

tan x

Got questions? Get instant answers now!

1 csc x sin x ; sec x  and  tan x

Got questions? Get instant answers now!

1 sin x 1 + sin x 1 + sin x 1 sin x ; sec x  and  tan x

4 sec x tan x

Got questions? Get instant answers now!

tan x ; sec x

Got questions? Get instant answers now!

sec x ; cot x

± 1 cot 2 x + 1

Got questions? Get instant answers now!

sec x ; sin x

Got questions? Get instant answers now!

cot x ; sin x

± 1 sin 2 x sin x

Got questions? Get instant answers now!

cot x ; csc x

Got questions? Get instant answers now!

For the following exercises, verify the identity.

cos x cos 3 x = cos x sin 2 x

Answers will vary. Sample proof:

cos x cos 3 x = cos x ( 1 cos 2 x )
= cos x sin 2 x

Got questions? Get instant answers now!

cos x ( tan x sec ( x ) ) = sin x 1

Got questions? Get instant answers now!

1 + sin 2 x cos 2 x = 1 cos 2 x + sin 2 x cos 2 x = 1 + 2 tan 2 x

Answers will vary. Sample proof:
1 + sin 2 x cos 2 x = 1 cos 2 x + sin 2 x cos 2 x = sec 2 x + tan 2 x = tan 2 x + 1 + tan 2 x = 1 + 2 tan 2 x

Got questions? Get instant answers now!

( sin x + cos x ) 2 = 1 + 2 sin x cos x

Got questions? Get instant answers now!

cos 2 x tan 2 x = 2 sin 2 x sec 2 x

Answers will vary. Sample proof:
cos 2 x tan 2 x = 1 sin 2 x ( sec 2 x 1 ) = 1 sin 2 x sec 2 x + 1 = 2 sin 2 x sec 2 x

Got questions? Get instant answers now!

Extensions

For the following exercises, prove or disprove the identity.

1 1 + cos x 1 1 cos ( x ) = 2 cot x csc x

Got questions? Get instant answers now!

csc 2 x ( 1 + sin 2 x ) = cot 2 x

False

Got questions? Get instant answers now!

( sec 2 ( x ) tan 2 x tan x ) ( 2 + 2 tan x 2 + 2 cot x ) 2 sin 2 x = cos 2 x

Got questions? Get instant answers now!

tan x sec x sin ( x ) = cos 2 x

False

Got questions? Get instant answers now!

sec ( x ) tan x + cot x = sin ( x )

Got questions? Get instant answers now!

1 + sin x cos x = cos x 1 + sin ( x )

Proved with negative and Pythagorean identities

Got questions? Get instant answers now!

For the following exercises, determine whether the identity is true or false. If false, find an appropriate equivalent expression.

cos 2 θ sin 2 θ 1 tan 2 θ = sin 2 θ

Got questions? Get instant answers now!

3 sin 2 θ + 4 cos 2 θ = 3 + cos 2 θ

True 3 sin 2 θ + 4 cos 2 θ = 3 sin 2 θ + 3 cos 2 θ + cos 2 θ = 3 ( sin 2 θ + cos 2 θ ) + cos 2 θ = 3 + cos 2 θ

Got questions? Get instant answers now!

sec θ + tan θ cot θ + cos θ = sec 2 θ

Got questions? Get instant answers now!

Questions & Answers

what is microbiology
Agebe Reply
What is a cell
Odelana Reply
what is cell
Mohammed
how does Neisseria cause meningitis
Nyibol Reply
what is microbiologist
Muhammad Reply
what is errata
Muhammad
is the branch of biology that deals with the study of microorganisms.
Ntefuni Reply
What is microbiology
Mercy Reply
studies of microbes
Louisiaste
when we takee the specimen which lumbar,spin,
Ziyad Reply
How bacteria create energy to survive?
Muhamad Reply
Bacteria doesn't produce energy they are dependent upon their substrate in case of lack of nutrients they are able to make spores which helps them to sustain in harsh environments
_Adnan
But not all bacteria make spores, l mean Eukaryotic cells have Mitochondria which acts as powerhouse for them, since bacteria don't have it, what is the substitution for it?
Muhamad
they make spores
Louisiaste
what is sporadic nd endemic, epidemic
Aminu Reply
the significance of food webs for disease transmission
Abreham
food webs brings about an infection as an individual depends on number of diseased foods or carriers dully.
Mark
explain assimilatory nitrate reduction
Esinniobiwa Reply
Assimilatory nitrate reduction is a process that occurs in some microorganisms, such as bacteria and archaea, in which nitrate (NO3-) is reduced to nitrite (NO2-), and then further reduced to ammonia (NH3).
Elkana
This process is called assimilatory nitrate reduction because the nitrogen that is produced is incorporated in the cells of microorganisms where it can be used in the synthesis of amino acids and other nitrogen products
Elkana
Examples of thermophilic organisms
Shu Reply
Give Examples of thermophilic organisms
Shu
advantages of normal Flora to the host
Micheal Reply
Prevent foreign microbes to the host
Abubakar
they provide healthier benefits to their hosts
ayesha
They are friends to host only when Host immune system is strong and become enemies when the host immune system is weakened . very bad relationship!
Mark
what is cell
faisal Reply
cell is the smallest unit of life
Fauziya
cell is the smallest unit of life
Akanni
ok
Innocent
cell is the structural and functional unit of life
Hasan
is the fundamental units of Life
Musa
what are emergency diseases
Micheal Reply
There are nothing like emergency disease but there are some common medical emergency which can occur simultaneously like Bleeding,heart attack,Breathing difficulties,severe pain heart stock.Hope you will get my point .Have a nice day ❣️
_Adnan
define infection ,prevention and control
Innocent
I think infection prevention and control is the avoidance of all things we do that gives out break of infections and promotion of health practices that promote life
Lubega
Heyy Lubega hussein where are u from?
_Adnan
en français
Adama
which site have a normal flora
ESTHER Reply
Many sites of the body have it Skin Nasal cavity Oral cavity Gastro intestinal tract
Safaa
skin
Asiina
skin,Oral,Nasal,GIt
Sadik
How can Commensal can Bacteria change into pathogen?
Sadik
How can Commensal Bacteria change into pathogen?
Sadik
all
Tesfaye
by fussion
Asiina
what are the advantages of normal Flora to the host
Micheal
what are the ways of control and prevention of nosocomial infection in the hospital
Micheal
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 4

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Precalculus. OpenStax CNX. Jan 19, 2016 Download for free at https://legacy.cnx.org/content/col11667/1.6
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Precalculus' conversation and receive update notifications?

Ask