<< Chapter < Page Chapter >> Page >

Finding the n Th root of a complex number

Evaluate the cube roots of z = 8 ( cos ( 2 π 3 ) + i sin ( 2 π 3 ) ) .

We have

z 1 3 = 8 1 3 [ cos ( 2 π 3 3 + 2 k π 3 ) + i sin ( 2 π 3 3 + 2 k π 3 ) ] z 1 3 = 2 [ cos ( 2 π 9 + 2 k π 3 ) + i sin ( 2 π 9 + 2 k π 3 ) ]

There will be three roots: k = 0 , 1 , 2. When k = 0 , we have

z 1 3 = 2 ( cos ( 2 π 9 ) + i sin ( 2 π 9 ) )

When k = 1 , we have

z 1 3 = 2 [ cos ( 2 π 9 + 6 π 9 ) + i sin ( 2 π 9 + 6 π 9 ) ]     Add  2 ( 1 ) π 3  to each angle. z 1 3 = 2 ( cos ( 8 π 9 ) + i sin ( 8 π 9 ) )

When k = 2 , we have

z 1 3 = 2 [ cos ( 2 π 9 + 12 π 9 ) + i sin ( 2 π 9 + 12 π 9 ) ] Add  2 ( 2 ) π 3  to each angle. z 1 3 = 2 ( cos ( 14 π 9 ) + i sin ( 14 π 9 ) )

Remember to find the common denominator to simplify fractions in situations like this one. For k = 1 , the angle simplification is

2 π 3 3 + 2 ( 1 ) π 3 = 2 π 3 ( 1 3 ) + 2 ( 1 ) π 3 ( 3 3 ) = 2 π 9 + 6 π 9 = 8 π 9
Got questions? Get instant answers now!
Got questions? Get instant answers now!

Find the four fourth roots of 16 ( cos ( 120° ) + i sin ( 120° ) ) .

z 0 = 2 ( cos ( 30° ) + i sin ( 30° ) )

z 1 = 2 ( cos ( 120° ) + i sin ( 120° ) )

z 2 = 2 ( cos ( 210° ) + i sin ( 210° ) )

z 3 = 2 ( cos ( 300° ) + i sin ( 300° ) )

Got questions? Get instant answers now!

Access these online resources for additional instruction and practice with polar forms of complex numbers.

Key concepts

  • Complex numbers in the form a + b i are plotted in the complex plane similar to the way rectangular coordinates are plotted in the rectangular plane. Label the x- axis as the real axis and the y- axis as the imaginary axis. See [link] .
  • The absolute value of a complex number is the same as its magnitude. It is the distance from the origin to the point: | z | = a 2 + b 2 . See [link] and [link] .
  • To write complex numbers in polar form, we use the formulas x = r cos θ , y = r sin θ , and r = x 2 + y 2 . Then, z = r ( cos θ + i sin θ ) . See [link] and [link] .
  • To convert from polar form to rectangular form, first evaluate the trigonometric functions. Then, multiply through by r . See [link] and [link] .
  • To find the product of two complex numbers, multiply the two moduli and add the two angles. Evaluate the trigonometric functions, and multiply using the distributive property. See [link] .
  • To find the quotient of two complex numbers in polar form, find the quotient of the two moduli and the difference of the two angles. See [link] .
  • To find the power of a complex number z n , raise r to the power n , and multiply θ by n . See [link] .
  • Finding the roots of a complex number is the same as raising a complex number to a power, but using a rational exponent. See [link] .

Section exercises

Verbal

A complex number is a + b i . Explain each part.

a is the real part, b is the imaginary part, and i = 1

Got questions? Get instant answers now!

What does the absolute value of a complex number represent?

Got questions? Get instant answers now!

How is a complex number converted to polar form?

Polar form converts the real and imaginary part of the complex number in polar form using x = r cos θ and y = r sin θ .

Got questions? Get instant answers now!

How do we find the product of two complex numbers?

Got questions? Get instant answers now!

What is De Moivre’s Theorem and what is it used for?

z n = r n ( cos ( n θ ) + i sin ( n θ ) ) It is used to simplify polar form when a number has been raised to a power.

Got questions? Get instant answers now!

Algebraic

For the following exercises, find the absolute value of the given complex number.

For the following exercises, write the complex number in polar form.

8 4 i

4 5 cis ( 333.4° )

Got questions? Get instant answers now!

For the following exercises, convert the complex number from polar to rectangular form.

z = 7 cis ( π 6 )

7 3 2 + i 7 2

Got questions? Get instant answers now!

z = 4 cis ( 7 π 6 )

2 3 2 i

Got questions? Get instant answers now!

z = 3 cis ( 240° )

1.5 i 3 3 2

Got questions? Get instant answers now!

For the following exercises, find z 1 z 2 in polar form.

z 1 = 2 3 cis ( 116° ) ;   z 2 = 2 cis ( 82° )

4 3 cis ( 198° )

Got questions? Get instant answers now!

z 1 = 2 cis ( 205° ) ;   z 2 = 2 2 cis ( 118° )

Got questions? Get instant answers now!

z 1 = 3 cis ( 120° ) ;   z 2 = 1 4 cis ( 60° )

3 4 cis ( 180° )

Got questions? Get instant answers now!

z 1 = 3 cis ( π 4 ) ;   z 2 = 5 cis ( π 6 )

Got questions? Get instant answers now!

z 1 = 5 cis ( 5 π 8 ) ;   z 2 = 15 cis ( π 12 )

5 3 cis ( 17 π 24 )

Got questions? Get instant answers now!

z 1 = 4 cis ( π 2 ) ;   z 2 = 2 cis ( π 4 )

Got questions? Get instant answers now!

For the following exercises, find z 1 z 2 in polar form.

z 1 = 21 cis ( 135° ) ;   z 2 = 3 cis ( 65° )

7 cis ( 70° )

Got questions? Get instant answers now!

z 1 = 2 cis ( 90° ) ;   z 2 = 2 cis ( 60° )

Got questions? Get instant answers now!

z 1 = 15 cis ( 120° ) ;   z 2 = 3 cis ( 40° )

5 cis ( 80° )

Got questions? Get instant answers now!

z 1 = 6 cis ( π 3 ) ;   z 2 = 2 cis ( π 4 )

Got questions? Get instant answers now!

z 1 = 5 2 cis ( π ) ;   z 2 = 2 cis ( 2 π 3 )

5 cis ( π 3 )

Got questions? Get instant answers now!

z 1 = 2 cis ( 3 π 5 ) ;   z 2 = 3 cis ( π 4 )

Got questions? Get instant answers now!

For the following exercises, find the powers of each complex number in polar form.

Find z 3 when z = 5 cis ( 45° ) .

125 cis ( 135° )

Got questions? Get instant answers now!

Find z 4 when z = 2 cis ( 70° ) .

Got questions? Get instant answers now!

Find z 2 when z = 3 cis ( 120° ) .

9 cis ( 240° )

Got questions? Get instant answers now!

Find z 2 when z = 4 cis ( π 4 ) .

Got questions? Get instant answers now!

Find z 4 when z = cis ( 3 π 16 ) .

cis ( 3 π 4 )

Got questions? Get instant answers now!

Find z 3 when z = 3 cis ( 5 π 3 ) .

Got questions? Get instant answers now!

For the following exercises, evaluate each root.

Evaluate the cube root of z when z = 27 cis ( 240° ) .

3 cis ( 80° ) , 3 cis ( 200° ) , 3 cis ( 320° )

Got questions? Get instant answers now!

Evaluate the square root of z when z = 16 cis ( 100° ) .

Got questions? Get instant answers now!

Evaluate the cube root of z when z = 32 cis ( 2 π 3 ) .

2 4 3 cis ( 2 π 9 ) , 2 4 3 cis ( 8 π 9 ) , 2 4 3 cis ( 14 π 9 )

Got questions? Get instant answers now!

Evaluate the square root of z when z = 32 cis ( π ) .

Got questions? Get instant answers now!

Evaluate the cube root of z when z = 8 cis ( 7 π 4 ) .

2 2 cis ( 7 π 8 ) , 2 2 cis ( 15 π 8 )

Got questions? Get instant answers now!

Graphical

For the following exercises, plot the complex number in the complex plane.

Technology

For the following exercises, find all answers rounded to the nearest hundredth.

Use the rectangular to polar feature on the graphing calculator to change 5 + 5 i to polar form.

Got questions? Get instant answers now!

Use the rectangular to polar feature on the graphing calculator to change 3 2 i to polar form.

3.61 e 0.59 i

Got questions? Get instant answers now!

Use the rectangular to polar feature on the graphing calculator to change 3 8 i to polar form.

Got questions? Get instant answers now!

Use the polar to rectangular feature on the graphing calculator to change 4 cis ( 120° ) to rectangular form.

2 + 3.46 i

Got questions? Get instant answers now!

Use the polar to rectangular feature on the graphing calculator to change 2 cis ( 45° ) to rectangular form.

Got questions? Get instant answers now!

Use the polar to rectangular feature on the graphing calculator to change 5 cis ( 210° ) to rectangular form.

4.33 2.50 i

Got questions? Get instant answers now!

Questions & Answers

what is microbiology
Agebe Reply
What is a cell
Odelana Reply
what is cell
Mohammed
how does Neisseria cause meningitis
Nyibol Reply
what is microbiologist
Muhammad Reply
what is errata
Muhammad
is the branch of biology that deals with the study of microorganisms.
Ntefuni Reply
What is microbiology
Mercy Reply
studies of microbes
Louisiaste
when we takee the specimen which lumbar,spin,
Ziyad Reply
How bacteria create energy to survive?
Muhamad Reply
Bacteria doesn't produce energy they are dependent upon their substrate in case of lack of nutrients they are able to make spores which helps them to sustain in harsh environments
_Adnan
But not all bacteria make spores, l mean Eukaryotic cells have Mitochondria which acts as powerhouse for them, since bacteria don't have it, what is the substitution for it?
Muhamad
they make spores
Louisiaste
what is sporadic nd endemic, epidemic
Aminu Reply
the significance of food webs for disease transmission
Abreham
food webs brings about an infection as an individual depends on number of diseased foods or carriers dully.
Mark
explain assimilatory nitrate reduction
Esinniobiwa Reply
Assimilatory nitrate reduction is a process that occurs in some microorganisms, such as bacteria and archaea, in which nitrate (NO3-) is reduced to nitrite (NO2-), and then further reduced to ammonia (NH3).
Elkana
This process is called assimilatory nitrate reduction because the nitrogen that is produced is incorporated in the cells of microorganisms where it can be used in the synthesis of amino acids and other nitrogen products
Elkana
Examples of thermophilic organisms
Shu Reply
Give Examples of thermophilic organisms
Shu
advantages of normal Flora to the host
Micheal Reply
Prevent foreign microbes to the host
Abubakar
they provide healthier benefits to their hosts
ayesha
They are friends to host only when Host immune system is strong and become enemies when the host immune system is weakened . very bad relationship!
Mark
what is cell
faisal Reply
cell is the smallest unit of life
Fauziya
cell is the smallest unit of life
Akanni
ok
Innocent
cell is the structural and functional unit of life
Hasan
is the fundamental units of Life
Musa
what are emergency diseases
Micheal Reply
There are nothing like emergency disease but there are some common medical emergency which can occur simultaneously like Bleeding,heart attack,Breathing difficulties,severe pain heart stock.Hope you will get my point .Have a nice day ❣️
_Adnan
define infection ,prevention and control
Innocent
I think infection prevention and control is the avoidance of all things we do that gives out break of infections and promotion of health practices that promote life
Lubega
Heyy Lubega hussein where are u from?
_Adnan
en français
Adama
which site have a normal flora
ESTHER Reply
Many sites of the body have it Skin Nasal cavity Oral cavity Gastro intestinal tract
Safaa
skin
Asiina
skin,Oral,Nasal,GIt
Sadik
How can Commensal can Bacteria change into pathogen?
Sadik
How can Commensal Bacteria change into pathogen?
Sadik
all
Tesfaye
by fussion
Asiina
what are the advantages of normal Flora to the host
Micheal
what are the ways of control and prevention of nosocomial infection in the hospital
Micheal
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 4

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Precalculus. OpenStax CNX. Jan 19, 2016 Download for free at https://legacy.cnx.org/content/col11667/1.6
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Precalculus' conversation and receive update notifications?

Ask