<< Chapter < Page Chapter >> Page >
In this section, you will:
  • Apply the Binomial Theorem.

A polynomial with two terms is called a binomial. We have already learned to multiply binomials and to raise binomials to powers, but raising a binomial to a high power can be tedious and time-consuming. In this section, we will discuss a shortcut that will allow us to find ( x + y ) n without multiplying the binomial by itself n times.

Identifying binomial coefficients

In Counting Principles , we studied combinations . In the shortcut to finding ( x + y ) n , we will need to use combinations to find the coefficients that will appear in the expansion of the binomial. In this case, we use the notation ( n r ) instead of C ( n , r ) , but it can be calculated in the same way. So

( n r ) = C ( n , r ) = n ! r ! ( n r ) !

The combination ( n r ) is called a binomial coefficient . An example of a binomial coefficient is ( 5 2 ) = C ( 5 , 2 ) = 10.

Binomial coefficients

If n and r are integers greater than or equal to 0 with n r , then the binomial coefficient    is

( n r ) = C ( n , r ) = n ! r ! ( n r ) !

Is a binomial coefficient always a whole number?

Yes. Just as the number of combinations must always be a whole number, a binomial coefficient will always be a whole number.

Finding binomial coefficients

Find each binomial coefficient.

  1. ( 5 3 )
  2. ( 9 2 )
  3. ( 9 7 )

Use the formula to calculate each binomial coefficient. You can also use the n C r function on your calculator.

( n r ) = C ( n , r ) = n ! r ! ( n r ) !
  1. ( 5 3 ) = 5 ! 3 ! ( 5 3 ) ! = 5 4 3 ! 3 ! 2 ! = 10
  2. ( 9 2 ) = 9 ! 2 ! ( 9 2 ) ! = 9 8 7 ! 2 ! 7 ! = 36
  3. ( 9 7 ) = 9 ! 7 ! ( 9 7 ) ! = 9 8 7 ! 7 ! 2 ! = 36
Got questions? Get instant answers now!
Got questions? Get instant answers now!

Find each binomial coefficient.

  1. ( 7 3 )
  2. ( 11 4 )

  1. 35
  2. 330

Got questions? Get instant answers now!

Using the binomial theorem

When we expand ( x + y ) n by multiplying, the result is called a binomial expansion    , and it includes binomial coefficients. If we wanted to expand ( x + y ) 52 , we might multiply ( x + y ) by itself fifty-two times. This could take hours! If we examine some simple binomial expansions, we can find patterns that will lead us to a shortcut for finding more complicated binomial expansions.

( x + y ) 2 = x 2 + 2 x y + y 2 ( x + y ) 3 = x 3 + 3 x 2 y + 3 x y 2 + y 3 ( x + y ) 4 = x 4 + 4 x 3 y + 6 x 2 y 2 + 4 x y 3 + y 4

First, let’s examine the exponents. With each successive term, the exponent for x decreases and the exponent for y increases. The sum of the two exponents is n for each term.

Next, let’s examine the coefficients. Notice that the coefficients increase and then decrease in a symmetrical pattern. The coefficients follow a pattern:

( n 0 ) , ( n 1 ) , ( n 2 ) , ... , ( n n ) .

These patterns lead us to the Binomial Theorem , which can be used to expand any binomial.

( x + y ) n = k = 0 n ( n k ) x n k y k = x n + ( n 1 ) x n 1 y + ( n 2 ) x n 2 y 2 + ... + ( n n 1 ) x y n 1 + y n

Another way to see the coefficients is to examine the expansion of a binomial in general form, x + y , to successive powers 1, 2, 3, and 4.

( x + y ) 1 = x + y ( x + y ) 2 = x 2 + 2 x y + y 2 ( x + y ) 3 = x 3 + 3 x 2 y + 3 x y 2 + y 3 ( x + y ) 4 = x 4 + 4 x 3 y + 6 x 2 y 2 + 4 x y 3 + y 4

Can you guess the next expansion for the binomial ( x + y ) 5 ?

Graph of the function f_2.

See [link] , which illustrates the following:

  • There are n + 1 terms in the expansion of ( x + y ) n .
  • The degree (or sum of the exponents) for each term is n .
  • The powers on x begin with n and decrease to 0.
  • The powers on y begin with 0 and increase to n .
  • The coefficients are symmetric.

To determine the expansion on ( x + y ) 5 , we see n = 5 , thus, there will be 5+1 = 6 terms. Each term has a combined degree of 5. In descending order for powers of x , the pattern is as follows:

Questions & Answers

why we learn economics ? Explain briefly
ayalew Reply
why we learn economics ?
ayalew
why we learn economics
ayalew
profit maximize for monopolistically?
Usman Reply
what kind of demand curve under monopoly?
Mik Reply
what is the difference between inflation and scarcity ?
Abdu Reply
What stops oligopolists from acting together as a monopolist and earning the highest possible level of profits?
Mik
why economics is difficult for 2nd school students.
Siraj Reply
what does mean opportunity cost?
Aster Reply
what is poetive effect of population growth
Solomon Reply
what is inflation
Nasir Reply
what is demand
Eleni
what is economics
IMLAN Reply
economics theory describes individual behavior as the result of a process of optimization under constraints the objective to be reached being determined by
Kalkidan
Economics is a branch of social science that deal with How to wise use of resource ,s
Kassie
need
WARKISA
Economic Needs: In economics, needs are goods or services that are necessary for maintaining a certain standard of living. This includes things like healthcare, education, and transportation.
Kalkidan
What is demand and supply
EMPEROR Reply
deman means?
Alex
what is supply?
Alex
ex play supply?
Alex
Money market is a branch or segment of financial market where short-term debt instruments are traded upon. The instruments in this market includes Treasury bills, Bonds, Commercial Papers, Call money among other.
murana Reply
good
Kayode
what is money market
umar Reply
Examine the distinction between theory of comparative cost Advantage and theory of factor proportion
Fatima Reply
What is inflation
Bright Reply
a general and ongoing rise in the level of prices in an economy
AI-Robot
What are the factors that affect demand for a commodity
Florence Reply
price
Kenu
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 3

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Precalculus. OpenStax CNX. Jan 19, 2016 Download for free at https://legacy.cnx.org/content/col11667/1.6
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Precalculus' conversation and receive update notifications?

Ask