<< Chapter < Page Chapter >> Page >

Sketching the graph of an exponential function of the form f ( x ) = b x

Sketch a graph of f ( x ) = 0.25 x . State the domain, range, and asymptote.

Before graphing, identify the behavior and create a table of points for the graph.

  • Since b = 0.25 is between zero and one, we know the function is decreasing. The left tail of the graph will increase without bound, and the right tail will approach the asymptote y = 0.
  • Create a table of points as in [link] .
    x 3 2 1 0 1 2 3
    f ( x ) = 0.25 x 64 16 4 1 0.25 0.0625 0.015625
  • Plot the y -intercept, ( 0 , 1 ) , along with two other points. We can use ( 1 , 4 ) and ( 1 , 0.25 ) .

Draw a smooth curve connecting the points as in [link] .

Graph of the decaying exponential function f(x) = 0.25^x with labeled points at (-1, 4), (0, 1), and (1, 0.25).

The domain is ( , ) ; the range is ( 0 , ) ; the horizontal asymptote is y = 0.

Got questions? Get instant answers now!
Got questions? Get instant answers now!

Sketch the graph of f ( x ) = 4 x . State the domain, range, and asymptote.

The domain is ( , ) ; the range is ( 0 , ) ; the horizontal asymptote is y = 0.

Graph of the increasing exponential function f(x) = 4^x with labeled points at (-1, 0.25), (0, 1), and (1, 4).
Got questions? Get instant answers now!

Graphing transformations of exponential functions

Transformations of exponential graphs behave similarly to those of other functions. Just as with other parent functions, we can apply the four types of transformations—shifts, reflections, stretches, and compressions—to the parent function f ( x ) = b x without loss of shape. For instance, just as the quadratic function maintains its parabolic shape when shifted, reflected, stretched, or compressed, the exponential function also maintains its general shape regardless of the transformations applied.

Graphing a vertical shift

The first transformation occurs when we add a constant d to the parent function f ( x ) = b x , giving us a vertical shift     d units in the same direction as the sign. For example, if we begin by graphing a parent function, f ( x ) = 2 x , we can then graph two vertical shifts alongside it, using d = 3 : the upward shift, g ( x ) = 2 x + 3 and the downward shift, h ( x ) = 2 x 3. Both vertical shifts are shown in [link] .

Graph of three functions, g(x) = 2^x+3 in blue with an asymptote at y=3, f(x) = 2^x in orange with an asymptote at y=0, and h(x)=2^x-3 with an asymptote at y=-3. Note that each functions’ transformations are described in the text.

Observe the results of shifting f ( x ) = 2 x vertically:

  • The domain, ( , ) remains unchanged.
  • When the function is shifted up 3 units to g ( x ) = 2 x + 3 :
    • The y- intercept shifts up 3 units to ( 0 , 4 ) .
    • The asymptote shifts up 3 units to y = 3.
    • The range becomes ( 3 , ) .
  • When the function is shifted down 3 units to h ( x ) = 2 x 3 :
    • The y- intercept shifts down 3 units to ( 0 , 2 ) .
    • The asymptote also shifts down 3 units to y = 3.
    • The range becomes ( 3 , ) .

Graphing a horizontal shift

The next transformation occurs when we add a constant c to the input of the parent function f ( x ) = b x , giving us a horizontal shift     c units in the opposite direction of the sign. For example, if we begin by graphing the parent function f ( x ) = 2 x , we can then graph two horizontal shifts alongside it, using c = 3 : the shift left, g ( x ) = 2 x + 3 , and the shift right, h ( x ) = 2 x 3 . Both horizontal shifts are shown in [link] .

Graph of three functions, g(x) = 2^(x+3) in blue, f(x) = 2^x in orange, and h(x)=2^(x-3). Each functions’ asymptotes are at y=0Note that each functions’ transformations are described in the text.

Observe the results of shifting f ( x ) = 2 x horizontally:

  • The domain, ( , ) , remains unchanged.
  • The asymptote, y = 0 , remains unchanged.
  • The y- intercept shifts such that:
    • When the function is shifted left 3 units to g ( x ) = 2 x + 3 , the y -intercept becomes ( 0 , 8 ) . This is because 2 x + 3 = ( 8 ) 2 x , so the initial value of the function is 8.
    • When the function is shifted right 3 units to h ( x ) = 2 x 3 , the y -intercept becomes ( 0 , 1 8 ) . Again, see that 2 x 3 = ( 1 8 ) 2 x , so the initial value of the function is 1 8 .

Questions & Answers

A golfer on a fairway is 70 m away from the green, which sits below the level of the fairway by 20 m. If the golfer hits the ball at an angle of 40° with an initial speed of 20 m/s, how close to the green does she come?
Aislinn Reply
cm
tijani
what is titration
John Reply
what is physics
Siyaka Reply
A mouse of mass 200 g falls 100 m down a vertical mine shaft and lands at the bottom with a speed of 8.0 m/s. During its fall, how much work is done on the mouse by air resistance
Jude Reply
Can you compute that for me. Ty
Jude
what is the dimension formula of energy?
David Reply
what is viscosity?
David
what is inorganic
emma Reply
what is chemistry
Youesf Reply
what is inorganic
emma
Chemistry is a branch of science that deals with the study of matter,it composition,it structure and the changes it undergoes
Adjei
please, I'm a physics student and I need help in physics
Adjanou
chemistry could also be understood like the sexual attraction/repulsion of the male and female elements. the reaction varies depending on the energy differences of each given gender. + masculine -female.
Pedro
A ball is thrown straight up.it passes a 2.0m high window 7.50 m off the ground on it path up and takes 1.30 s to go past the window.what was the ball initial velocity
Krampah Reply
2. A sled plus passenger with total mass 50 kg is pulled 20 m across the snow (0.20) at constant velocity by a force directed 25° above the horizontal. Calculate (a) the work of the applied force, (b) the work of friction, and (c) the total work.
Sahid Reply
you have been hired as an espert witness in a court case involving an automobile accident. the accident involved car A of mass 1500kg which crashed into stationary car B of mass 1100kg. the driver of car A applied his brakes 15 m before he skidded and crashed into car B. after the collision, car A s
Samuel Reply
can someone explain to me, an ignorant high school student, why the trend of the graph doesn't follow the fact that the higher frequency a sound wave is, the more power it is, hence, making me think the phons output would follow this general trend?
Joseph Reply
Nevermind i just realied that the graph is the phons output for a person with normal hearing and not just the phons output of the sound waves power, I should read the entire thing next time
Joseph
Follow up question, does anyone know where I can find a graph that accuretly depicts the actual relative "power" output of sound over its frequency instead of just humans hearing
Joseph
"Generation of electrical energy from sound energy | IEEE Conference Publication | IEEE Xplore" ***ieeexplore.ieee.org/document/7150687?reload=true
Ryan
what's motion
Maurice Reply
what are the types of wave
Maurice
answer
Magreth
progressive wave
Magreth
hello friend how are you
Muhammad Reply
fine, how about you?
Mohammed
hi
Mujahid
A string is 3.00 m long with a mass of 5.00 g. The string is held taut with a tension of 500.00 N applied to the string. A pulse is sent down the string. How long does it take the pulse to travel the 3.00 m of the string?
yasuo Reply
Who can show me the full solution in this problem?
Reofrir Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Precalculus. OpenStax CNX. Jan 19, 2016 Download for free at https://legacy.cnx.org/content/col11667/1.6
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Precalculus' conversation and receive update notifications?

Ask