<< Chapter < Page Chapter >> Page >

Graph the hyperbola given by the equation x 2 144 y 2 81 = 1. Identify and label the vertices, co-vertices, foci, and asymptotes.

vertices: ( ± 12 , 0 ) ; co-vertices: ( 0 , ± 9 ) ; foci: ( ± 15 , 0 ) ; asymptotes: y = ± 3 4 x ;

Got questions? Get instant answers now!

Graphing hyperbolas not centered at the origin

Graphing hyperbolas centered at a point ( h , k ) other than the origin is similar to graphing ellipses centered at a point other than the origin. We use the standard forms ( x h ) 2 a 2 ( y k ) 2 b 2 = 1 for horizontal hyperbolas, and ( y k ) 2 a 2 ( x h ) 2 b 2 = 1 for vertical hyperbolas. From these standard form equations we can easily calculate and plot key features of the graph: the coordinates of its center, vertices, co-vertices, and foci; the equations of its asymptotes; and the positions of the transverse and conjugate axes.

Given a general form for a hyperbola centered at ( h , k ) , sketch the graph.

  1. Convert the general form to that standard form. Determine which of the standard forms applies to the given equation.
  2. Use the standard form identified in Step 1 to determine the position of the transverse axis; coordinates for the center, vertices, co-vertices, foci; and equations for the asymptotes.
    1. If the equation is in the form ( x h ) 2 a 2 ( y k ) 2 b 2 = 1 , then
      • the transverse axis is parallel to the x -axis
      • the center is ( h , k )
      • the coordinates of the vertices are ( h ± a , k )
      • the coordinates of the co-vertices are ( h , k ± b )
      • the coordinates of the foci are ( h ± c , k )
      • the equations of the asymptotes are y = ± b a ( x h ) + k
    2. If the equation is in the form ( y k ) 2 a 2 ( x h ) 2 b 2 = 1 , then
      • the transverse axis is parallel to the y -axis
      • the center is ( h , k )
      • the coordinates of the vertices are ( h , k ± a )
      • the coordinates of the co-vertices are ( h ± b , k )
      • the coordinates of the foci are ( h , k ± c )
      • the equations of the asymptotes are y = ± a b ( x h ) + k
  3. Solve for the coordinates of the foci using the equation c = ± a 2 + b 2 .
  4. Plot the center, vertices, co-vertices, foci, and asymptotes in the coordinate plane and draw a smooth curve to form the hyperbola.

Graphing a hyperbola centered at ( h , k ) given an equation in general form

Graph the hyperbola    given by the equation 9 x 2 4 y 2 36 x 40 y 388 = 0. Identify and label the center, vertices, co-vertices, foci, and asymptotes.

Start by expressing the equation in standard form. Group terms that contain the same variable, and move the constant to the opposite side of the equation.

( 9 x 2 36 x ) ( 4 y 2 + 40 y ) = 388

Factor the leading coefficient of each expression.

9 ( x 2 4 x ) 4 ( y 2 + 10 y ) = 388

Complete the square twice. Remember to balance the equation by adding the same constants to each side.

9 ( x 2 4 x + 4 ) 4 ( y 2 + 10 y + 25 ) = 388 + 36 100

Rewrite as perfect squares.

9 ( x 2 ) 2 4 ( y + 5 ) 2 = 324

Divide both sides by the constant term to place the equation in standard form.

( x 2 ) 2 36 ( y + 5 ) 2 81 = 1

The standard form that applies to the given equation is ( x h ) 2 a 2 ( y k ) 2 b 2 = 1 , where a 2 = 36 and b 2 = 81 , or a = 6 and b = 9. Thus, the transverse axis is parallel to the x -axis. It follows that:

  • the center of the ellipse is ( h , k ) = ( 2 , −5 )
  • the coordinates of the vertices are ( h ± a , k ) = ( 2 ± 6 , −5 ) , or ( 4 , −5 ) and ( 8 , −5 )
  • the coordinates of the co-vertices are ( h , k ± b ) = ( 2 , 5 ± 9 ) , or ( 2 , 14 ) and ( 2 , 4 )
  • the coordinates of the foci are ( h ± c , k ) , where c = ± a 2 + b 2 . Solving for c , we have

c = ± 36 + 81 = ± 117 = ± 3 13

Therefore, the coordinates of the foci are ( 2 3 13 , −5 ) and ( 2 + 3 13 , −5 ) .

The equations of the asymptotes are y = ± b a ( x h ) + k = ± 3 2 ( x 2 ) 5.

Next, we plot and label the center, vertices, co-vertices, foci, and asymptotes and draw smooth curves to form the hyperbola, as shown in [link] .

Got questions? Get instant answers now!
Got questions? Get instant answers now!

Questions & Answers

A golfer on a fairway is 70 m away from the green, which sits below the level of the fairway by 20 m. If the golfer hits the ball at an angle of 40° with an initial speed of 20 m/s, how close to the green does she come?
Aislinn Reply
cm
tijani
what is titration
John Reply
what is physics
Siyaka Reply
A mouse of mass 200 g falls 100 m down a vertical mine shaft and lands at the bottom with a speed of 8.0 m/s. During its fall, how much work is done on the mouse by air resistance
Jude Reply
Can you compute that for me. Ty
Jude
what is the dimension formula of energy?
David Reply
what is viscosity?
David
what is inorganic
emma Reply
what is chemistry
Youesf Reply
what is inorganic
emma
Chemistry is a branch of science that deals with the study of matter,it composition,it structure and the changes it undergoes
Adjei
please, I'm a physics student and I need help in physics
Adjanou
chemistry could also be understood like the sexual attraction/repulsion of the male and female elements. the reaction varies depending on the energy differences of each given gender. + masculine -female.
Pedro
A ball is thrown straight up.it passes a 2.0m high window 7.50 m off the ground on it path up and takes 1.30 s to go past the window.what was the ball initial velocity
Krampah Reply
2. A sled plus passenger with total mass 50 kg is pulled 20 m across the snow (0.20) at constant velocity by a force directed 25° above the horizontal. Calculate (a) the work of the applied force, (b) the work of friction, and (c) the total work.
Sahid Reply
you have been hired as an espert witness in a court case involving an automobile accident. the accident involved car A of mass 1500kg which crashed into stationary car B of mass 1100kg. the driver of car A applied his brakes 15 m before he skidded and crashed into car B. after the collision, car A s
Samuel Reply
can someone explain to me, an ignorant high school student, why the trend of the graph doesn't follow the fact that the higher frequency a sound wave is, the more power it is, hence, making me think the phons output would follow this general trend?
Joseph Reply
Nevermind i just realied that the graph is the phons output for a person with normal hearing and not just the phons output of the sound waves power, I should read the entire thing next time
Joseph
Follow up question, does anyone know where I can find a graph that accuretly depicts the actual relative "power" output of sound over its frequency instead of just humans hearing
Joseph
"Generation of electrical energy from sound energy | IEEE Conference Publication | IEEE Xplore" ***ieeexplore.ieee.org/document/7150687?reload=true
Ryan
what's motion
Maurice Reply
what are the types of wave
Maurice
answer
Magreth
progressive wave
Magreth
hello friend how are you
Muhammad Reply
fine, how about you?
Mohammed
hi
Mujahid
A string is 3.00 m long with a mass of 5.00 g. The string is held taut with a tension of 500.00 N applied to the string. A pulse is sent down the string. How long does it take the pulse to travel the 3.00 m of the string?
yasuo Reply
Who can show me the full solution in this problem?
Reofrir Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 4

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Precalculus. OpenStax CNX. Jan 19, 2016 Download for free at https://legacy.cnx.org/content/col11667/1.6
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Precalculus' conversation and receive update notifications?

Ask