<< Chapter < Page Chapter >> Page >

Drawing an angle in standard position always starts the same way—draw the initial side along the positive x -axis. To place the terminal side of the angle, we must calculate the fraction of a full rotation the angle represents. We do that by dividing the angle measure in degrees by 360°. For example, to draw a 90° angle, we calculate that 90° 360° = 1 4 . So, the terminal side will be one-fourth of the way around the circle, moving counterclockwise from the positive x -axis. To draw a 360° angle, we calculate that 360° 360° = 1. So the terminal side will be 1 complete rotation around the circle, moving counterclockwise from the positive x -axis. In this case, the initial side and the terminal side overlap. See [link] .

Side by side graphs. Graph on the left is a 90 degree angle and graph on the right is a 360 degree angle. Terminal side and initial side are labeled for both graphs.

Since we define an angle in standard position    by its initial side, we have a special type of angle whose terminal side lies on an axis, a quadrantal angle . This type of angle can have a measure of 0°, 90°, 180°, 270° or 360°. See [link] .

Four side by side graphs. First graph shows angle of 0 degrees. Second graph shows an angle of 90 degrees. Third graph shows an angle of 180 degrees. Fourth graph shows an angle of 270 degrees.
Quadrantal angles are angles in standard position whose terminal side lies along an axis. Examples are shown.

Quadrantal angles

Quadrantal angles are angels in standard position whose terminal side lies on an axis, including 0°, 90°, 180°, 270°, or 360°.

Given an angle measure in degrees, draw the angle in standard position.

  1. Express the angle measure as a fraction of 360°.
  2. Reduce the fraction to simplest form.
  3. Draw an angle that contains that same fraction of the circle, beginning on the positive x -axis and moving counterclockwise for positive angles and clockwise for negative angles.

Drawing an angle in standard position measured in degrees

  1. Sketch an angle of 30° in standard position.
  2. Sketch an angle of −135° in standard position.
  1. Divide the angle measure by 360°.
    30° 360° = 1 12

    To rewrite the fraction in a more familiar fraction, we can recognize that

    1 12 = 1 3 ( 1 4 )

    One-twelfth equals one-third of a quarter, so by dividing a quarter rotation into thirds, we can sketch a line at 30° as in [link] .

    Graph of a 30 degree angle.
  2. Divide the angle measure by 360°.
    135° 360° = 3 8

    In this case, we can recognize that

    3 8 = 3 2 ( 1 4 )

    Negative three-eighths is one and one-half times a quarter, so we place a line by moving clockwise one full quarter and one-half of another quarter, as in [link] .

    Graph of a negative 135 degree angle.
Got questions? Get instant answers now!
Got questions? Get instant answers now!

Show an angle of 240° on a circle in standard position.

Graph of a 240 degree angle.
Got questions? Get instant answers now!

Converting between degrees and radians

Dividing a circle into 360 parts is an arbitrary choice, although it creates the familiar degree measurement. We may choose other ways to divide a circle. To find another unit, think of the process of drawing a circle. Imagine that you stop before the circle is completed. The portion that you drew is referred to as an arc. An arc may be a portion of a full circle, a full circle, or more than a full circle, represented by more than one full rotation. The length of the arc around an entire circle is called the circumference of that circle.

The circumference of a circle is C = 2 π r . If we divide both sides of this equation by r , we create the ratio of the circumference to the radius, which is always 2 π regardless of the length of the radius. So the circumference of any circle is 2 π 6.28 times the length of the radius. That means that if we took a string as long as the radius and used it to measure consecutive lengths around the circumference, there would be room for six full string-lengths and a little more than a quarter of a seventh, as shown in [link] .

Questions & Answers

discuss how the following factors such as predation risk, competition and habitat structure influence animal's foraging behavior in essay form
Burnet Reply
location of cervical vertebra
KENNEDY Reply
What are acid
Sheriff Reply
define biology infour way
Happiness Reply
What are types of cell
Nansoh Reply
how can I get this book
Gatyin Reply
what is lump
Chineye Reply
what is cell
Maluak Reply
what is biology
Maluak
what's cornea?
Majak Reply
what are cell
Achol
Explain the following terms . (1) Abiotic factors in an ecosystem
Nomai Reply
Abiotic factors are non living components of ecosystem.These include physical and chemical elements like temperature,light,water,soil,air quality and oxygen etc
Qasim
Define the term Abiotic
Marial
what is biology
daniel Reply
what is diffusion
Emmanuel Reply
passive process of transport of low-molecular weight material according to its concentration gradient
AI-Robot
what is production?
Catherine
hello
Marial
Pathogens and diseases
how did the oxygen help a human being
Achol Reply
how did the nutrition help the plants
Achol Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Precalculus. OpenStax CNX. Jan 19, 2016 Download for free at https://legacy.cnx.org/content/col11667/1.6
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Precalculus' conversation and receive update notifications?

Ask