<< Chapter < Page Chapter >> Page >

Given a rational expression with repeated linear factors, decompose it.

  1. Use a variable like A , B , or C for the numerators and account for increasing powers of the denominators.
    P ( x ) Q ( x ) = A 1 ( a x + b ) + A 2 ( a x + b ) 2 +   . +  A n ( a x + b ) n
  2. Multiply both sides of the equation by the common denominator to eliminate fractions.
  3. Expand the right side of the equation and collect like terms.
  4. Set coefficients of like terms from the left side of the equation equal to those on the right side to create a system of equations to solve for the numerators.

Decomposing with repeated linear factors

Decompose the given rational expression with repeated linear factors.

x 2 + 2 x + 4 x 3 −4 x 2 + 4 x

The denominator factors are x ( x −2 ) 2 . To allow for the repeated factor of ( x −2 ) , the decomposition will include three denominators: x , ( x −2 ) , and ( x −2 ) 2 . Thus,

x 2 + 2 x + 4 x 3 −4 x 2 + 4 x = A x + B ( x −2 ) + C ( x −2 ) 2

Next, we multiply both sides by the common denominator.

x ( x −2 ) 2 [ x 2 + 2 x + 4 x ( x −2 ) 2 ] = [ A x + B ( x −2 ) + C ( x −2 ) 2 ] x ( x −2 ) 2                  x 2 + 2 x + 4 = A ( x −2 ) 2 + B x ( x −2 ) + C x

On the right side of the equation, we expand and collect like terms.

x 2 + 2 x + 4 = A ( x 2 4 x + 4 ) + B ( x 2 2 x ) + C x                        = A x 2 4 A x + 4 A + B x 2 2 B x + C x                        = ( A + B ) x 2 + ( 4 A 2 B + C ) x + 4 A

Next, we compare the coefficients of both sides. This will give the system of equations in three variables:

x 2 + 2 x + 4 = ( A + B ) x 2 + ( −4 A −2 B + C ) x + 4 A
A + B = −1 (1) −4 A −2 B + C = 2 (2) 4 A = 4 (3)

Solving for A , we have

4 A = 4    A = 1

Substitute A = 1 into equation (1).

   A + B = −1 ( 1 ) + B = −1           B = −2

Then, to solve for C , substitute the values for A and B into equation (2).

       −4 A −2 B + C = 2 −4 ( 1 ) −2 ( −2 ) + C = 2              −4 + 4 + C = 2                             C = 2

Thus,

x 2 + 2 x + 4 x 3 −4 x 2 + 4 x = 1 x 2 ( x −2 ) + 2 ( x −2 ) 2
Got questions? Get instant answers now!
Got questions? Get instant answers now!

Find the partial fraction decomposition of the expression with repeated linear factors.

6 x −11 ( x −1 ) 2

6 x −1 5 ( x −1 ) 2

Got questions? Get instant answers now!

Decomposing P ( x ) Q ( x ) , Where Q(x) Has a nonrepeated irreducible quadratic factor

So far, we have performed partial fraction decomposition with expressions that have had linear factors in the denominator, and we applied numerators A , B , or C representing constants. Now we will look at an example where one of the factors in the denominator is a quadratic expression that does not factor. This is referred to as an irreducible quadratic factor. In cases like this, we use a linear numerator such as A x + B , B x + C , etc.

Decomposition of P ( x ) Q ( x ) : Q ( x ) Has a nonrepeated irreducible quadratic factor

The partial fraction decomposition of P ( x ) Q ( x ) such that Q ( x ) has a nonrepeated irreducible quadratic factor and the degree of P ( x ) is less than the degree of Q ( x ) is written as

P ( x ) Q ( x ) = A 1 x + B 1 ( a 1 x 2 + b 1 x + c 1 ) + A 2 x + B 2 ( a 2 x 2 + b 2 x + c 2 ) + + A n x + B n ( a n x 2 + b n x + c n )

The decomposition may contain more rational expressions if there are linear factors. Each linear factor will have a different constant numerator: A , B , C , and so on.

Given a rational expression where the factors of the denominator are distinct, irreducible quadratic factors, decompose it.

  1. Use variables such as A , B , or C for the constant numerators over linear factors, and linear expressions such as A 1 x + B 1 , A 2 x + B 2 , etc., for the numerators of each quadratic factor in the denominator.
    P ( x ) Q ( x ) = A a x + b + A 1 x + B 1 ( a 1 x 2 + b 1 x + c 1 ) + A 2 x + B 2 ( a 2 x 2 + b 2 x + c 2 ) + + A n x + B n ( a n x 2 + b n x + c n )
  2. Multiply both sides of the equation by the common denominator to eliminate fractions.
  3. Expand the right side of the equation and collect like terms.
  4. Set coefficients of like terms from the left side of the equation equal to those on the right side to create a system of equations to solve for the numerators.

Questions & Answers

A golfer on a fairway is 70 m away from the green, which sits below the level of the fairway by 20 m. If the golfer hits the ball at an angle of 40° with an initial speed of 20 m/s, how close to the green does she come?
Aislinn Reply
cm
tijani
what is titration
John Reply
what is physics
Siyaka Reply
A mouse of mass 200 g falls 100 m down a vertical mine shaft and lands at the bottom with a speed of 8.0 m/s. During its fall, how much work is done on the mouse by air resistance
Jude Reply
Can you compute that for me. Ty
Jude
what is the dimension formula of energy?
David Reply
what is viscosity?
David
what is inorganic
emma Reply
what is chemistry
Youesf Reply
what is inorganic
emma
Chemistry is a branch of science that deals with the study of matter,it composition,it structure and the changes it undergoes
Adjei
please, I'm a physics student and I need help in physics
Adjanou
chemistry could also be understood like the sexual attraction/repulsion of the male and female elements. the reaction varies depending on the energy differences of each given gender. + masculine -female.
Pedro
A ball is thrown straight up.it passes a 2.0m high window 7.50 m off the ground on it path up and takes 1.30 s to go past the window.what was the ball initial velocity
Krampah Reply
2. A sled plus passenger with total mass 50 kg is pulled 20 m across the snow (0.20) at constant velocity by a force directed 25° above the horizontal. Calculate (a) the work of the applied force, (b) the work of friction, and (c) the total work.
Sahid Reply
you have been hired as an espert witness in a court case involving an automobile accident. the accident involved car A of mass 1500kg which crashed into stationary car B of mass 1100kg. the driver of car A applied his brakes 15 m before he skidded and crashed into car B. after the collision, car A s
Samuel Reply
can someone explain to me, an ignorant high school student, why the trend of the graph doesn't follow the fact that the higher frequency a sound wave is, the more power it is, hence, making me think the phons output would follow this general trend?
Joseph Reply
Nevermind i just realied that the graph is the phons output for a person with normal hearing and not just the phons output of the sound waves power, I should read the entire thing next time
Joseph
Follow up question, does anyone know where I can find a graph that accuretly depicts the actual relative "power" output of sound over its frequency instead of just humans hearing
Joseph
"Generation of electrical energy from sound energy | IEEE Conference Publication | IEEE Xplore" ***ieeexplore.ieee.org/document/7150687?reload=true
Ryan
what's motion
Maurice Reply
what are the types of wave
Maurice
answer
Magreth
progressive wave
Magreth
hello friend how are you
Muhammad Reply
fine, how about you?
Mohammed
hi
Mujahid
A string is 3.00 m long with a mass of 5.00 g. The string is held taut with a tension of 500.00 N applied to the string. A pulse is sent down the string. How long does it take the pulse to travel the 3.00 m of the string?
yasuo Reply
Who can show me the full solution in this problem?
Reofrir Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 2

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Precalculus. OpenStax CNX. Jan 19, 2016 Download for free at https://legacy.cnx.org/content/col11667/1.6
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Precalculus' conversation and receive update notifications?

Ask