<< Chapter < Page Chapter >> Page >

Expressing products of sines in terms of cosine

Expressing the product of sines in terms of cosine is also derived from the sum and difference identities for cosine. In this case, we will first subtract the two cosine formulas:

                     cos ( α β ) = cos α cos β + sin α sin β                   cos ( α + β ) = ( cos α cos β sin α sin β ) ____________________________________________________ cos ( α β ) cos ( α + β ) = 2 sin α sin β

Then, we divide by 2 to isolate the product of sines:

sin α sin β = 1 2 [ cos ( α β ) cos ( α + β ) ]

Similarly we could express the product of cosines in terms of sine or derive other product-to-sum formulas.

The product-to-sum formulas

The product-to-sum formulas are as follows:

cos α cos β = 1 2 [ cos ( α β ) + cos ( α + β ) ]
sin α cos β = 1 2 [ sin ( α + β ) + sin ( α β ) ]
sin α sin β = 1 2 [ cos ( α β ) cos ( α + β ) ]
cos α sin β = 1 2 [ sin ( α + β ) sin ( α β ) ]

Express the product as a sum or difference

Write cos ( 3 θ ) cos ( 5 θ ) as a sum or difference.

We have the product of cosines, so we begin by writing the related formula. Then we substitute the given angles and simplify.

          cos α cos β = 1 2 [ cos ( α β ) + cos ( α + β ) ] cos ( 3 θ ) cos ( 5 θ ) = 1 2 [ cos ( 3 θ 5 θ ) + cos ( 3 θ + 5 θ ) ]                          = 1 2 [ cos ( 2 θ ) + cos ( 8 θ ) ]   Use even-odd identity .
Got questions? Get instant answers now!
Got questions? Get instant answers now!

Use the product-to-sum formula to evaluate cos 11 π 12 cos π 12 .

2 3 4

Got questions? Get instant answers now!

Expressing sums as products

Some problems require the reverse of the process we just used. The sum-to-product formulas allow us to express sums of sine or cosine as products. These formulas can be derived from the product-to-sum identities. For example, with a few substitutions, we can derive the sum-to-product identity for sine . Let u + v 2 = α and u v 2 = β .

Then,

α + β = u + v 2 + u v 2           = 2 u 2           = u α β = u + v 2 u v 2           = 2 v 2           = v

Thus, replacing α and β in the product-to-sum formula with the substitute expressions, we have

                     sin α cos β = 1 2 [ sin ( α + β ) + sin ( α β ) ]    sin ( u + v 2 ) cos ( u v 2 ) = 1 2 [ sin u + sin v ]   Substitute for ( α + β )  and  ( α β ) 2 sin ( u + v 2 ) cos ( u v 2 ) = sin u + sin v

The other sum-to-product identities are derived similarly.

Sum-to-product formulas

The sum-to-product formulas are as follows:

sin α + sin β = 2 sin ( α + β 2 ) cos ( α β 2 )
sin α sin β = 2 sin ( α β 2 ) cos ( α + β 2 )
cos α cos β = 2 sin ( α + β 2 ) sin ( α β 2 )
cos α + cos β = 2 cos ( α + β 2 ) cos ( α β 2 )

Writing the difference of sines as a product

Write the following difference of sines expression as a product: sin ( 4 θ ) sin ( 2 θ ) .

We begin by writing the formula for the difference of sines.

sin α sin β = 2 sin ( α β 2 ) cos ( α + β 2 )

Substitute the values into the formula, and simplify.

sin ( 4 θ ) sin ( 2 θ ) = 2 sin ( 4 θ 2 θ 2 ) cos ( 4 θ + 2 θ 2 )                             = 2 sin ( 2 θ 2 ) cos ( 6 θ 2 )                             = 2 sin θ cos ( 3 θ )
Got questions? Get instant answers now!
Got questions? Get instant answers now!

Use the sum-to-product formula to write the sum as a product: sin ( 3 θ ) + sin ( θ ) .

2 sin ( 2 θ ) cos ( θ )

Got questions? Get instant answers now!

Evaluating using the sum-to-product formula

Evaluate cos ( 15 ) cos ( 75 ) .

We begin by writing the formula for the difference of cosines.

cos α cos β = 2 sin ( α + β 2 ) sin ( α β 2 )

Then we substitute the given angles and simplify.

cos ( 15 ) cos ( 75 ) = 2 sin ( 15 + 75 2 ) sin ( 15 75 2 )                                 = 2 sin ( 45 ) sin ( 30 )                                 = 2 ( 2 2 ) ( 1 2 )                                 = 2 2
Got questions? Get instant answers now!
Got questions? Get instant answers now!

Questions & Answers

A golfer on a fairway is 70 m away from the green, which sits below the level of the fairway by 20 m. If the golfer hits the ball at an angle of 40° with an initial speed of 20 m/s, how close to the green does she come?
Aislinn Reply
cm
tijani
what is titration
John Reply
what is physics
Siyaka Reply
A mouse of mass 200 g falls 100 m down a vertical mine shaft and lands at the bottom with a speed of 8.0 m/s. During its fall, how much work is done on the mouse by air resistance
Jude Reply
Can you compute that for me. Ty
Jude
what is the dimension formula of energy?
David Reply
what is viscosity?
David
what is inorganic
emma Reply
what is chemistry
Youesf Reply
what is inorganic
emma
Chemistry is a branch of science that deals with the study of matter,it composition,it structure and the changes it undergoes
Adjei
please, I'm a physics student and I need help in physics
Adjanou
chemistry could also be understood like the sexual attraction/repulsion of the male and female elements. the reaction varies depending on the energy differences of each given gender. + masculine -female.
Pedro
A ball is thrown straight up.it passes a 2.0m high window 7.50 m off the ground on it path up and takes 1.30 s to go past the window.what was the ball initial velocity
Krampah Reply
2. A sled plus passenger with total mass 50 kg is pulled 20 m across the snow (0.20) at constant velocity by a force directed 25° above the horizontal. Calculate (a) the work of the applied force, (b) the work of friction, and (c) the total work.
Sahid Reply
you have been hired as an espert witness in a court case involving an automobile accident. the accident involved car A of mass 1500kg which crashed into stationary car B of mass 1100kg. the driver of car A applied his brakes 15 m before he skidded and crashed into car B. after the collision, car A s
Samuel Reply
can someone explain to me, an ignorant high school student, why the trend of the graph doesn't follow the fact that the higher frequency a sound wave is, the more power it is, hence, making me think the phons output would follow this general trend?
Joseph Reply
Nevermind i just realied that the graph is the phons output for a person with normal hearing and not just the phons output of the sound waves power, I should read the entire thing next time
Joseph
Follow up question, does anyone know where I can find a graph that accuretly depicts the actual relative "power" output of sound over its frequency instead of just humans hearing
Joseph
"Generation of electrical energy from sound energy | IEEE Conference Publication | IEEE Xplore" ***ieeexplore.ieee.org/document/7150687?reload=true
Ryan
what's motion
Maurice Reply
what are the types of wave
Maurice
answer
Magreth
progressive wave
Magreth
hello friend how are you
Muhammad Reply
fine, how about you?
Mohammed
hi
Mujahid
A string is 3.00 m long with a mass of 5.00 g. The string is held taut with a tension of 500.00 N applied to the string. A pulse is sent down the string. How long does it take the pulse to travel the 3.00 m of the string?
yasuo Reply
Who can show me the full solution in this problem?
Reofrir Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 2

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Precalculus. OpenStax CNX. Jan 19, 2016 Download for free at https://legacy.cnx.org/content/col11667/1.6
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Precalculus' conversation and receive update notifications?

Ask