<< Chapter < Page Chapter >> Page >
In this section, you will:
  • Graph variations of  y=sin( x )  and  y=cos( x ).
  • Use phase shifts of sine and cosine curves.
A photo of a rainbow colored beam of light stretching across the floor.
Light can be separated into colors because of its wavelike properties. (credit: "wonderferret"/ Flickr)

White light, such as the light from the sun, is not actually white at all. Instead, it is a composition of all the colors of the rainbow in the form of waves. The individual colors can be seen only when white light passes through an optical prism that separates the waves according to their wavelengths to form a rainbow.

Light waves can be represented graphically by the sine function. In the chapter on Trigonometric Functions , we examined trigonometric functions such as the sine function. In this section, we will interpret and create graphs of sine and cosine functions.

Graphing sine and cosine functions

Recall that the sine and cosine functions relate real number values to the x - and y -coordinates of a point on the unit circle. So what do they look like on a graph on a coordinate plane? Let’s start with the sine function    . We can create a table of values and use them to sketch a graph. [link] lists some of the values for the sine function on a unit circle.

x 0 π 6 π 4 π 3 π 2 2 π 3 3 π 4 5 π 6 π
sin ( x ) 0 1 2 2 2 3 2 1 3 2 2 2 1 2 0

Plotting the points from the table and continuing along the x -axis gives the shape of the sine function. See [link] .

A graph of sin(x). Local maximum at (pi/2, 1). Local minimum at (3pi/2, -1). Period of 2pi.
The sine function

Notice how the sine values are positive between 0 and π , which correspond to the values of the sine function in quadrants I and II on the unit circle, and the sine values are negative between π and 2 π , which correspond to the values of the sine function in quadrants III and IV on the unit circle. See [link] .

A side-by-side graph of a unit circle and a graph of sin(x). The two graphs show the equivalence of the coordinates.
Plotting values of the sine function

Now let’s take a similar look at the cosine function    . Again, we can create a table of values and use them to sketch a graph. [link] lists some of the values for the cosine function on a unit circle.

x 0 π 6 π 4 π 3 π 2 2 π 3 3 π 4 5 π 6 π
cos ( x ) 1 3 2 2 2 1 2 0 1 2 2 2 3 2 1

As with the sine function, we can plots points to create a graph of the cosine function as in [link] .

A graph of cos(x). Local maxima at (0,1) and (2pi, 1). Local minimum at (pi, -1). Period of 2pi.
The cosine function

Because we can evaluate the sine and cosine of any real number, both of these functions are defined for all real numbers. By thinking of the sine and cosine values as coordinates of points on a unit circle, it becomes clear that the range of both functions must be the interval [ 1 , 1 ] .

In both graphs, the shape of the graph repeats after 2 π , which means the functions are periodic with a period of 2 π . A periodic function    is a function for which a specific horizontal shift    , P , results in a function equal to the original function: f ( x + P ) = f ( x ) for all values of x in the domain of f . When this occurs, we call the smallest such horizontal shift with P > 0 the period    of the function. [link] shows several periods of the sine and cosine functions.

Side-by-side graphs of sin(x) and cos(x). Graphs show period lengths for both functions, which is 2pi.

Looking again at the sine and cosine functions on a domain centered at the y -axis helps reveal symmetries. As we can see in [link] , the sine function    is symmetric about the origin. Recall from The Other Trigonometric Functions that we determined from the unit circle that the sine function is an odd function because sin ( x ) = sin x . Now we can clearly see this property from the graph.

Questions & Answers

for the "hiking" mix, there are 1,000 pieces in the mix, containing 390.8 g of fat, and 165 g of protein. if there is the same amount of almonds as cashews, how many of each item is in the trail mix?
ADNAN Reply
linear speed of an object
Melissa Reply
an object is traveling around a circle with a radius of 13 meters .if in 20 seconds a central angle of 1/7 Radian is swept out what are the linear and angular speed of the object
Melissa
test
Matrix
how to find domain
Mohamed Reply
like this: (2)/(2-x) the aim is to see what will not be compatible with this rational expression. If x= 0 then the fraction is undefined since we cannot divide by zero. Therefore, the domain consist of all real numbers except 2.
Dan
define the term of domain
Moha
if a>0 then the graph is concave
Angel Reply
if a<0 then the graph is concave blank
Angel
what's a domain
Kamogelo Reply
The set of all values you can use as input into a function su h that the output each time will be defined, meaningful and real.
Spiro
how fast can i understand functions without much difficulty
Joe Reply
what is inequalities
Nathaniel
functions can be understood without a lot of difficulty. Observe the following: f(2) 2x - x 2(2)-2= 2 now observe this: (2,f(2)) ( 2, -2) 2(-x)+2 = -2 -4+2=-2
Dan
what is set?
Kelvin Reply
a colony of bacteria is growing exponentially doubling in size every 100 minutes. how much minutes will it take for the colony of bacteria to triple in size
Divya Reply
I got 300 minutes. is it right?
Patience
no. should be about 150 minutes.
Jason
It should be 158.5 minutes.
Mr
ok, thanks
Patience
100•3=300 300=50•2^x 6=2^x x=log_2(6) =2.5849625 so, 300=50•2^2.5849625 and, so, the # of bacteria will double every (100•2.5849625) = 258.49625 minutes
Thomas
158.5 This number can be developed by using algebra and logarithms. Begin by moving log(2) to the right hand side of the equation like this: t/100 log(2)= log(3) step 1: divide each side by log(2) t/100=1.58496250072 step 2: multiply each side by 100 to isolate t. t=158.49
Dan
what is the importance knowing the graph of circular functions?
Arabella Reply
can get some help basic precalculus
ismail Reply
What do you need help with?
Andrew
how to convert general to standard form with not perfect trinomial
Camalia Reply
can get some help inverse function
ismail
Rectangle coordinate
Asma Reply
how to find for x
Jhon Reply
it depends on the equation
Robert
yeah, it does. why do we attempt to gain all of them one side or the other?
Melissa
how to find x: 12x = 144 notice how 12 is being multiplied by x. Therefore division is needed to isolate x and whatever we do to one side of the equation we must do to the other. That develops this: x= 144/12 divide 144 by 12 to get x. addition: 12+x= 14 subtract 12 by each side. x =2
Dan
whats a domain
mike Reply
The domain of a function is the set of all input on which the function is defined. For example all real numbers are the Domain of any Polynomial function.
Spiro
Spiro; thanks for putting it out there like that, 😁
Melissa
foci (–7,–17) and (–7,17), the absolute value of the differenceof the distances of any point from the foci is 24.
Churlene Reply
Practice Key Terms 5

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Precalculus. OpenStax CNX. Jan 19, 2016 Download for free at https://legacy.cnx.org/content/col11667/1.6
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Precalculus' conversation and receive update notifications?

Ask