<< Chapter < Page Chapter >> Page >

Find the vertical and horizontal asymptotes of the function:

f ( x ) = ( 2 x 1 ) ( 2 x + 1 ) ( x 2 ) ( x + 3 )

Vertical asymptotes at x = 2 and x = 3 ; horizontal asymptote at y = 4.

Got questions? Get instant answers now!

Intercepts of rational functions

A rational function    will have a y -intercept when the input is zero, if the function is defined at zero. A rational function will not have a y -intercept if the function is not defined at zero.

Likewise, a rational function will have x -intercepts at the inputs that cause the output to be zero. Since a fraction is only equal to zero when the numerator is zero, x -intercepts can only occur when the numerator of the rational function is equal to zero.

Finding the intercepts of a rational function

Find the intercepts of f ( x ) = ( x 2 ) ( x + 3 ) ( x 1 ) ( x + 2 ) ( x 5 ) .

We can find the y -intercept by evaluating the function at zero

f ( 0 ) = ( 0 2 ) ( 0 + 3 ) ( 0 1 ) ( 0 + 2 ) ( 0 5 )          = 6 10          = 3 5         = 0.6

The x -intercepts will occur when the function is equal to zero:

0 = ( x 2 ) ( x + 3 ) ( x 1 ) ( x + 2 ) ( x 5 ) This is zero when the numerator is zero . 0 = ( x 2 ) ( x + 3 ) x = 2 ,   3

The y -intercept is ( 0 , –0.6 ) , the x -intercepts are ( 2 , 0 ) and ( –3 , 0 ) . See [link] .

Graph of f(x)=(x-2)(x+3)/(x-1)(x+2)(x-5) with its vertical asymptotes at x=-2, x=1, and x=5, its horizontal asymptote at y=0, and its intercepts at (-3, 0), (0, -0.6), and (2, 0).
Got questions? Get instant answers now!
Got questions? Get instant answers now!

Given the reciprocal squared function that is shifted right 3 units and down 4 units, write this as a rational function. Then, find the x - and y -intercepts and the horizontal and vertical asymptotes.

For the transformed reciprocal squared function, we find the rational form. f ( x ) = 1 ( x 3 ) 2 4 = 1 4 ( x 3 ) 2 ( x 3 ) 2 = 1 4 ( x 2 6 x + 9 ) ( x 3 ) ( x 3 ) = 4 x 2 + 24 x 35 x 2 6 x + 9

Because the numerator is the same degree as the denominator we know that as x ± ,   f ( x ) 4 ;   so   y = 4 is the horizontal asymptote. Next, we set the denominator equal to zero, and find that the vertical asymptote is x = 3 , because as x 3 , f ( x ) . We then set the numerator equal to 0 and find the x -intercepts are at ( 2.5 , 0 ) and ( 3.5 , 0 ) . Finally, we evaluate the function at 0 and find the y -intercept to be at ( 0 , 35 9 ) .

Got questions? Get instant answers now!

Graphing rational functions

In [link] , we see that the numerator of a rational function reveals the x -intercepts of the graph, whereas the denominator reveals the vertical asymptotes of the graph. As with polynomials, factors of the numerator may have integer powers greater than one. Fortunately, the effect on the shape of the graph at those intercepts is the same as we saw with polynomials.

The vertical asymptotes associated with the factors of the denominator will mirror one of the two toolkit reciprocal functions. When the degree of the factor in the denominator is odd, the distinguishing characteristic is that on one side of the vertical asymptote the graph heads towards positive infinity, and on the other side the graph heads towards negative infinity. See [link] .

Graph of y=1/x with its vertical asymptote at x=0.

When the degree of the factor in the denominator is even, the distinguishing characteristic is that the graph either heads toward positive infinity on both sides of the vertical asymptote or heads toward negative infinity on both sides. See [link] .

Graph of y=1/x^2 with its vertical asymptote at x=0.

For example, the graph of f ( x ) = ( x + 1 ) 2 ( x 3 ) ( x + 3 ) 2 ( x 2 ) is shown in [link] .

Graph of f(x)=(x+1)^2(x-3)/(x+3)^2(x-2) with its vertical asymptotes at x=-3 and x=2, its horizontal asymptote at y=1, and its intercepts at (-1, 0), (0, 1/6), and (3, 0).
  • At the x -intercept x = 1 corresponding to the ( x + 1 ) 2 factor of the numerator, the graph bounces, consistent with the quadratic nature of the factor.
  • At the x -intercept x = 3 corresponding to the ( x 3 ) factor of the numerator, the graph passes through the axis as we would expect from a linear factor.
  • At the vertical asymptote x = 3 corresponding to the ( x + 3 ) 2 factor of the denominator, the graph heads towards positive infinity on both sides of the asymptote, consistent with the behavior of the function f ( x ) = 1 x 2 .
  • At the vertical asymptote x = 2 , corresponding to the ( x 2 ) factor of the denominator, the graph heads towards positive infinity on the left side of the asymptote and towards negative infinity on the right side, consistent with the behavior of the function f ( x ) = 1 x .

Questions & Answers

A golfer on a fairway is 70 m away from the green, which sits below the level of the fairway by 20 m. If the golfer hits the ball at an angle of 40° with an initial speed of 20 m/s, how close to the green does she come?
Aislinn Reply
cm
tijani
what is titration
John Reply
what is physics
Siyaka Reply
A mouse of mass 200 g falls 100 m down a vertical mine shaft and lands at the bottom with a speed of 8.0 m/s. During its fall, how much work is done on the mouse by air resistance
Jude Reply
Can you compute that for me. Ty
Jude
what is the dimension formula of energy?
David Reply
what is viscosity?
David
what is inorganic
emma Reply
what is chemistry
Youesf Reply
what is inorganic
emma
Chemistry is a branch of science that deals with the study of matter,it composition,it structure and the changes it undergoes
Adjei
please, I'm a physics student and I need help in physics
Adjanou
chemistry could also be understood like the sexual attraction/repulsion of the male and female elements. the reaction varies depending on the energy differences of each given gender. + masculine -female.
Pedro
A ball is thrown straight up.it passes a 2.0m high window 7.50 m off the ground on it path up and takes 1.30 s to go past the window.what was the ball initial velocity
Krampah Reply
2. A sled plus passenger with total mass 50 kg is pulled 20 m across the snow (0.20) at constant velocity by a force directed 25° above the horizontal. Calculate (a) the work of the applied force, (b) the work of friction, and (c) the total work.
Sahid Reply
you have been hired as an espert witness in a court case involving an automobile accident. the accident involved car A of mass 1500kg which crashed into stationary car B of mass 1100kg. the driver of car A applied his brakes 15 m before he skidded and crashed into car B. after the collision, car A s
Samuel Reply
can someone explain to me, an ignorant high school student, why the trend of the graph doesn't follow the fact that the higher frequency a sound wave is, the more power it is, hence, making me think the phons output would follow this general trend?
Joseph Reply
Nevermind i just realied that the graph is the phons output for a person with normal hearing and not just the phons output of the sound waves power, I should read the entire thing next time
Joseph
Follow up question, does anyone know where I can find a graph that accuretly depicts the actual relative "power" output of sound over its frequency instead of just humans hearing
Joseph
"Generation of electrical energy from sound energy | IEEE Conference Publication | IEEE Xplore" ***ieeexplore.ieee.org/document/7150687?reload=true
Ryan
what's motion
Maurice Reply
what are the types of wave
Maurice
answer
Magreth
progressive wave
Magreth
hello friend how are you
Muhammad Reply
fine, how about you?
Mohammed
hi
Mujahid
A string is 3.00 m long with a mass of 5.00 g. The string is held taut with a tension of 500.00 N applied to the string. A pulse is sent down the string. How long does it take the pulse to travel the 3.00 m of the string?
yasuo Reply
Who can show me the full solution in this problem?
Reofrir Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 5

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Precalculus. OpenStax CNX. Jan 19, 2016 Download for free at https://legacy.cnx.org/content/col11667/1.6
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Precalculus' conversation and receive update notifications?

Ask