<< Chapter < Page | Chapter >> Page > |
There are several dominant features that can be observed in a gamma spectrum. The dominant feature that will be seen is the photopeak. The photopeak is the peak that is generated when a gamma-ray is totally absorbed by the detector. Higher density detectors and larger detector sizes increase the probability of the gamma-ray being absorbed.
The second major feature that will be observed is that of the Compton edge and distribution. The Compton edge arises due to Compton Effect, wherein a portion of the energy of the gamma-ray is transferred to the semiconductor detector or the scintillator. This occurs when the relatively high energy gamma ray strikes a relatively low energy electron. There is a relatively sharp edge to the Compton edge that corresponds to the maximum amount of energy that can be transferred to the electron via this type of scattering. The broad peak lower in energy than the Compton edge is the Compton distribution and corresponds to the energies that result from a variety of scattering angles. A feature in Compton distribution is the backscatter peak. This peak is a result of the same effect but corresponds to the minimum energy amount of energy transferred. The sum of the energies of the Compton edge and the backscatter peak should yield the energy of the photopeak.
Another group of features in a gamma spectrum are the peaks that are associated with pair production. Pair production is the process by which a gamma ray of sufficiently high energy (>1.022 MeV) can produce an electron-positron pair. The electron and positron can annihilate and produce two 0.511 MeV gamma photons. If all three gamma rays, the original with its energy reduced by 1.022 MeV and the two annihilation gamma rays, are detected simultaneously, then a full energy peak is observed. If one of the annihilation gamma rays is not absorbed by the detector, then a peak that is equal to the full energy less 0.511 MeV is observed. This is known as an escape peak. If both annihilation gamma rays escape, then a full energy peak less 1.022 MeV is observed. This is known as a double escape peak.
Natural uranium is composed mostly of 238 U with low levels of 235 U and 234 U. In the process of making enriched uranium, uranium with a higher level of 235 U, depleted uranium is produced. Depleted uranium is used in many applications particularly for its high density. Unfortunately, uranium is toxic and is a potential health hazard and is sometimes found in trafficked radioactive materials, so it is important to have a methodology for detection and analysis of it.
One easy method for this determination is achieved by examining the spectrum of the sample and comparing it qualitatively to the spectrum of a sample that is known to be natural uranium. This type of qualitative approach is not suitable for issues that are of concern to national security. Fortunately, the same approach can be used in a quantitative fashion by examining the ratios of various gamma-ray photopeaks.
Notification Switch
Would you like to follow the 'Physical methods in chemistry and nano science' conversation and receive update notifications?