<< Chapter < Page Chapter >> Page >

Modifiers

Modifiers are added to the mobile phase to play with its properties. As mentioned a few times previously, CO 2 supercritical fluid lacks polarity. In order to add polarity to the fluid (without causing reactivity), a polar modifier will often be added. Modifiers usually raise the critical pressure and temperature of the mobile phase a little, but in return add polarity to the phase and result in a fully resolved sample. Unfortunately, with too much modifier, higher temperatures and pressures are needed and reactivity increases (which is dangerous and bad for the operator). Modifiers, such as ethanol or methanol, are used in small amounts as needed for the mobile phase in order to create a more polar fluid.

Advantages of supercritical fluid chromatography

Clearly, SFC possesses some extraordinary potential as far as chromatography techniques go. It has some incredible capabilities that allow efficient and accurate resolution of mixtures. Below is a summary of its advantages and disadvantages stacked against other conventional (competing) chromatography methods.

Advantages over hplc

  • Because supercritical fluids have low viscosities the analysis is faster, there is a much lower pressure drop across the column, and open tubular columns can be used.
  • Shorter column lengths are needed (10-20 m for SFC versus 15-60 m for HPLC) due to the high diffusivity of the supercritical fluid. More interactions can occur in a shorter span of time/distance.
  • Resolving power is much greater (5x) than HPLC due to the high diffusivity of the supercritical fluid. More interactions result in better separation of the components in a shorter amount of time.

Advantages over gc

  • Able to analyze many solutes with no derivatization since there is no need to convert most polar groups into nonpolar ones.
  • Can analyze thermally labile compounds more easily with high resolution since it can provide faster analysis at lower temperatures.
  • Can analyze solutes with high molecular weight due to their greater solubizing power.

General disadvantages

  • Cannot analyze extremely polar solutes due to relatively nonpolar mobile phase, CO 2 .

Applications

While the use of SFC has been mainly organic-oriented, there are still a few ways that inorganic compound mixtures are separated using the method. The two main ones, separation of chiral compounds (mainly metal-ligand complexes) and organometallics are discussed here.

Chiral compounds

For chiral molecules, the procedures and choice of column in SFC are very similar to those used in HPLC. Packed with cellulose type chiral stationary phase (or some other chiral stationary phase), the sample flows through the chiral compound and only molecules with a matching chirality will stick to the column. By running a pure CO 2 supercritical fluid mobile phase, the non-sticking enantiomer will elute first, followed eventually (but slowly) with the other one.

In the field of inorganic chemistry, a racemic mixture of Co(acac) 3 , both isomers shown in [link] , has been resolved using a cellulose-based chiral stationary phase. The SFC method was one of the best and most efficient instruments in analyzing the chiral compound. While SFC easily separates coordinate covalent compounds, it is not necessary to use such an extensive instrument to separate mixtures of it since there are many simpler techniques.

The two isomers of Co(acac) 3 in a racemic mixture which were resolved by SFC.

Organometallics

Many d-block organometallics are highly reactive and easily decompose in air. SFC offers a way to chromatograph mixtures of large, unusual organometallic compounds. Large cobalt and rhodium based organometallic compound mixtures have been separated using SFC ( [link] ) without exposing the compounds to air.

Examples of cobalt and rhodium based organometallic compound mixtures separated by SFC. Adapted from Compounds by I Bruheim, E Fooladi, E. Lundanes, T. Greibrokk, J. Microcolumn Sep. , 2001, 13 , 156.

By using a stationary phase of siloxanes, oxygen-linked silicon particles with different substituents attached, the organometallics were resolved based on size and charge. Thanks to the non-polar, highly diffusive, and high viscosity properties of a 100% CO 2 supercritical fluid, the mixture was resolved and analyzed with a flame ionization detector. It was determined that the method was sensitive enough to detect impurities of 1%. Because the efficiency of SFC is so impressive, the potential for it in the organometallic field is huge. Identifying impurities down to 1% shows promise for not only preliminary data in experiments, but quality control as well.

Conclusion

While it may have its drawbacks, SFC remains an untapped resource in the ways of chromatography. The advantages to using supercritical fluids as mobile phases demonstrate how resolution can be increased without sacrificing time or increasing column length. Nonetheless, it is still a well-utilized resource in the organic, biomedical, and pharmaceutical industries. SFC shows promise as a reliable way of separating and analyzing mixtures.

Bibliography

  • D. R. Gere, R. Board, and D. McManigill, Anal. Chem. , 1982, 54 , 736.
  • E. Klesper, A. H. Corwin, and D. A. Turner, Org. Chem. , 1962, 27 , 700.
  • M.N. Meyers, J. Giddings, Anal. Chem. , 1965, 37 , 1453.
  • K. Miyazawa, T. Ishiguro, and H. Oda, FPC production . Daicel Chemical Industries, LTD. Myoko, Japan (2007).
  • L. Toribio, C. Alonso, M. J. del Nozal, J. L. Bernal, and J. J. Jimnez, J. Sep. Sci. , 2006, 29 , 1363.
  • M. Caude and D. Thiebaut, Practical Supercritical Fluid Chromatography and Extraction , Harwood Academic Publishers, Amsterdam (1999).
  • M. D. Palmieri, J. Chem. Educ. , 1989, 66 , A141.
  • M. Saito, J. Biosci. Bioeng. , 2013, 115 , 590.
  • M. Yoshioka, S. Parvez, T. Miazaki, and H. Parvez, Supercritical Fluid Chromatography and Micro-HPLC , VNU Science Press, The Netherlands (1989).
  • R. M. Smith, Supercritical Fluid Chromatography , Royal Society of Chemistry (1988).
  • T. L. Chester and J. D. Pinkston, Anal. Chem. , 1990, 62 , 394R.

Questions & Answers

if three forces F1.f2 .f3 act at a point on a Cartesian plane in the daigram .....so if the question says write down the x and y components ..... I really don't understand
Syamthanda Reply
hey , can you please explain oxidation reaction & redox ?
Boitumelo Reply
hey , can you please explain oxidation reaction and redox ?
Boitumelo
for grade 12 or grade 11?
Sibulele
the value of V1 and V2
Tumelo Reply
advantages of electrons in a circuit
Rethabile Reply
we're do you find electromagnetism past papers
Ntombifuthi
what a normal force
Tholulwazi Reply
it is the force or component of the force that the surface exert on an object incontact with it and which acts perpendicular to the surface
Sihle
what is physics?
Petrus Reply
what is the half reaction of Potassium and chlorine
Anna Reply
how to calculate coefficient of static friction
Lisa Reply
how to calculate static friction
Lisa
How to calculate a current
Tumelo
how to calculate the magnitude of horizontal component of the applied force
Mogano
How to calculate force
Monambi
a structure of a thermocouple used to measure inner temperature
Anna Reply
a fixed gas of a mass is held at standard pressure temperature of 15 degrees Celsius .Calculate the temperature of the gas in Celsius if the pressure is changed to 2×10 to the power 4
Amahle Reply
How is energy being used in bonding?
Raymond Reply
what is acceleration
Syamthanda Reply
a rate of change in velocity of an object whith respect to time
Khuthadzo
how can we find the moment of torque of a circular object
Kidist
Acceleration is a rate of change in velocity.
Justice
t =r×f
Khuthadzo
how to calculate tension by substitution
Precious Reply
hi
Shongi
hi
Leago
use fnet method. how many obects are being calculated ?
Khuthadzo
khuthadzo hii
Hulisani
how to calculate acceleration and tension force
Lungile Reply
you use Fnet equals ma , newtoms second law formula
Masego
please help me with vectors in two dimensions
Mulaudzi Reply
how to calculate normal force
Mulaudzi
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Physical methods in chemistry and nano science. OpenStax CNX. May 05, 2015 Download for free at http://legacy.cnx.org/content/col10699/1.21
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Physical methods in chemistry and nano science' conversation and receive update notifications?

Ask