<< Chapter < Page Chapter >> Page >
Picture shows the schematics of a transmission electron microscope. An electron gun generates electron beam that passes through two sets of condenser lens and condenser apertures prior to hitting the specimen. The transmitted electrons are projected on a fluorescent screen and the image is sent to a camera.
TEM: An electron beam produced by an electron gun is collimated by condenser lenses and passes through a specimen. The transmitted electrons are projected on a screen and the image is sent to a camera. (credit: modification of work by Dr. Graham Beards)

Such limitations do not appear in the scanning electron microscope (SEM) , which was invented by Manfred von Ardenne in 1937. In an SEM, a typical energy of the electron beam is up to 40 keV and the beam is not transmitted through a sample but is scattered off its surface. Surface topography of the sample is reconstructed by analyzing back-scattered electrons, transmitted electrons, and the emitted radiation produced by electrons interacting with atoms in the sample. The resolving power of an SEM is better than 1 nm, and the magnification can be more than 250 times better than that obtained with a light microscope. The samples scanned by an SEM can be as large as several centimeters but they must be specially prepared, depending on electrical properties of the sample.

High magnifications of the TEM and SEM allow us to see individual molecules. High resolving powers of the TEM and SEM allow us to see fine details, such as those shown in the SEM micrograph of pollen at the beginning of this chapter ( [link] ).

Resolving power of an electron microscope

If a 1.0-pm electron beam of a TEM passes through a 2.0 - μ m circular opening, what is the angle between the two just-resolvable point sources for this microscope?

Solution

We can directly use a formula for the resolving power, Δ θ , of a microscope (discussed in a previous chapter) when the wavelength of the incident radiation is λ = 1.0 pm and the diameter of the aperture is D = 2.0 μ m :

Δ θ = 1.22 λ D = 1.22 1.0 pm 2.0 μ m = 6.10 × 10 −7 rad = 3.50 × 10 −5 degree.

Significance

Note that if we used a conventional microscope with a 400-nm light, the resolving power would be only 14 ° , which means that all of the fine details in the image would be blurred.

Got questions? Get instant answers now!

Check Your Understanding Suppose that the diameter of the aperture in [link] is halved. How does it affect the resolving power?

doubles it

Got questions? Get instant answers now!

Summary

  • Wave-particle duality exists in nature: Under some experimental conditions, a particle acts as a particle; under other experimental conditions, a particle acts as a wave. Conversely, under some physical circumstances, electromagnetic radiation acts as a wave, and under other physical circumstances, radiation acts as a beam of photons.
  • Modern-era double-slit experiments with electrons demonstrated conclusively that electron-diffraction images are formed because of the wave nature of electrons.
  • The wave-particle dual nature of particles and of radiation has no classical explanation.
  • Quantum theory takes the wave property to be the fundamental property of all particles. A particle is seen as a moving wave packet. The wave nature of particles imposes a limitation on the simultaneous measurement of the particle’s position and momentum. Heisenberg’s uncertainty principle sets the limits on precision in such simultaneous measurements.
  • Wave-particle duality is exploited in many devices, such as charge-couple devices (used in digital cameras) or in the electron microscopy of the scanning electron microscope (SEM) and the transmission electron microscope (TEM).
Practice Key Terms 4

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, University physics volume 3. OpenStax CNX. Nov 04, 2016 Download for free at http://cnx.org/content/col12067/1.4
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'University physics volume 3' conversation and receive update notifications?

Ask