<< Chapter < Page | Chapter >> Page > |
The French physicist Jean Bernard Léon Foucault (1819–1868) modified Fizeau’s apparatus by replacing the toothed wheel with a rotating mirror. In 1862, he measured the speed of light to be which is within 0.6% of the presently accepted value. Albert Michelson (1852–1931) also used Foucault’s method on several occasions to measure the speed of light. His first experiments were performed in 1878; by 1926, he had refined the technique so well that he found c to be
Today, the speed of light is known to great precision. In fact, the speed of light in a vacuum c is so important that it is accepted as one of the basic physical quantities and has the value
where the approximate value of is used whenever three-digit accuracy is sufficient.
The speed of light through matter is less than it is in a vacuum, because light interacts with atoms in a material. The speed of light depends strongly on the type of material, since its interaction varies with different atoms, crystal lattices, and other substructures. We can define a constant of a material that describes the speed of light in it, called the index of refraction n :
where v is the observed speed of light in the material.
Since the speed of light is always less than c in matter and equals c only in a vacuum, the index of refraction is always greater than or equal to one; that is, . [link] gives the indices of refraction for some representative substances. The values are listed for a particular wavelength of light, because they vary slightly with wavelength. (This can have important effects, such as colors separated by a prism, as we will see in Dispersion .) Note that for gases, n is close to 1.0. This seems reasonable, since atoms in gases are widely separated, and light travels at c in the vacuum between atoms. It is common to take for gases unless great precision is needed. Although the speed of light v in a medium varies considerably from its value c in a vacuum, it is still a large speed.
Medium | n |
---|---|
Gases at , 1 atm | |
Air | 1.000293 |
Carbon dioxide | 1.00045 |
Hydrogen | 1.000139 |
Oxygen | 1.000271 |
Liquids at | |
Benzene | 1.501 |
Carbon disulfide | 1.628 |
Carbon tetrachloride | 1.461 |
Ethanol | 1.361 |
Glycerine | 1.473 |
Water, fresh | 1.333 |
Solids at | |
Diamond | 2.419 |
Fluorite | 1.434 |
Glass, crown | 1.52 |
Glass, flint | 1.66 |
Ice (at | 1.309 |
Polystyrene | 1.49 |
Plexiglas | 1.51 |
Quartz, crystalline | 1.544 |
Quartz, fused | 1.458 |
Sodium chloride | 1.544 |
Zircon | 1.923 |
The index of refraction for zircon is given as 1.923 in [link] , and c is given in [link] . Entering these values in the equation gives
Notification Switch
Would you like to follow the 'University physics volume 3' conversation and receive update notifications?