<< Chapter < Page Chapter >> Page >
Figure a shows a drawing of a long molecule. An electromagnetic wave goes through the molecule. The wave propagation direction is perpendicular to the molecular axis  and the oscillations of the wave are  parallel to the molecular axis. Electrons oscillate parallel to the length of the molecule. After passing the long molecule, the amplitude of the oscillations of the wave is significantly reduced. Figure b shows a similar drawing, except that the wave oscillates perpendicular to the axis of the long molecule. The electrons oscillate weakly perpendicular to the length of the molecule. After passing the long molecule, the magnitude of the oscillation of the EM wave is unchanged.
Diagram of an electron in a long molecule oscillating parallel to the molecule. The oscillation of the electron absorbs energy and reduces the intensity of the component of the EM wave that is parallel to the molecule.

Polarization by scattering

If you hold your polarizing sunglasses in front of you and rotate them while looking at blue sky, you will see the sky get bright and dim. This is a clear indication that light scattered by air is partially polarized. [link] helps illustrate how this happens. Since light is a transverse EM wave, it vibrates the electrons of air molecules perpendicular to the direction that it is traveling. The electrons then radiate like small antennae. Since they are oscillating perpendicular to the direction of the light ray, they produce EM radiation that is polarized perpendicular to the direction of the ray. When viewing the light along a line perpendicular to the original ray, as in the figure, there can be no polarization in the scattered light parallel to the original ray, because that would require the original ray to be a longitudinal wave. Along other directions, a component of the other polarization can be projected along the line of sight, and the scattered light is only partially polarized. Furthermore, multiple scattering can bring light to your eyes from other directions and can contain different polarizations.

The figure illustrates the scattering of unpolarized light by a molecule. As usual, the rays are represented by straight blue arrows and the electric field directions by double headed red arrows. The unpolarized incident light has electric field vectors oscillating in all directions in the plane perpendicular to the direction of the propagation of the light rays. The molecule scatters the light in all directions. Light that is scattered in the same direction as the incident light remains unpolarized. Light scattered in the direction perpendicular to the direction as the incident light is polarized perpendicular to the plane defined by the incident and the scattered rays. Light that is scattered in an intermediate direction is partially polarized. The electric field perpendicular to the plane has a larger amplitude than the field parallel to the incident ray.
Polarization by scattering. Unpolarized light scattering from air molecules shakes their electrons perpendicular to the direction of the original ray. The scattered light therefore has a polarization perpendicular to the original direction and none parallel to the original direction.

Photographs of the sky can be darkened by polarizing filters, a trick used by many photographers to make clouds brighter by contrast. Scattering from other particles, such as smoke or dust, can also polarize light. Detecting polarization in scattered EM waves can be a useful analytical tool in determining the scattering source.

A range of optical effects are used in sunglasses. Besides being polarizing, sunglasses may have colored pigments embedded in them, whereas others use either a nonreflective or reflective coating. A recent development is photochromic lenses, which darken in the sunlight and become clear indoors. Photochromic lenses are embedded with organic microcrystalline molecules that change their properties when exposed to UV in sunlight, but become clear in artificial lighting with no UV.

Liquid crystals and other polarization effects in materials

Although you are undoubtedly aware of liquid crystal displays (LCDs) found in watches, calculators, computer screens, cellphones, flat screen televisions, and many other places, you may not be aware that they are based on polarization. Liquid crystals are so named because their molecules can be aligned even though they are in a liquid. Liquid crystals have the property that they can rotate the polarization of light passing through them by 90 ° . Furthermore, this property can be turned off by the application of a voltage, as illustrated in [link] . It is possible to manipulate this characteristic quickly and in small, well-defined regions to create the contrast patterns we see in so many LCD devices.

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, University physics volume 3. OpenStax CNX. Nov 04, 2016 Download for free at http://cnx.org/content/col12067/1.4
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'University physics volume 3' conversation and receive update notifications?

Ask