<< Chapter < Page Chapter >> Page >
L = e 2 4 π ε 0 Z E R .

We see from this estimate that the higher the energy of α -particle, the narrower the width of the barrier that it is to tunnel through. We also know that the width of the potential barrier is the most important parameter in tunneling probability. Thus, highly energetic α -particles have a good chance to escape the nucleus, and, for such nuclei, the nuclear disintegration half-life is short. Notice that this process is highly nonlinear, meaning a small increase in the α -particle energy has a disproportionately large enhancing effect on the tunneling probability and, consequently, on shortening the half-life. This explains why the half-life of polonium that emits 8-MeV α -particles is only hundreds of milliseconds and the half-life of uranium that emits 4-MeV α -particles is billions of years.

The potential U of r is plotted as a function of r. For r less than R, U of r is constant and negative. At r = R, the potential rises vertically to some maximum positive value, then decays toward zero. The area under the curve is shaded. U of r equals E at r equal to R sub 0. A horizontal dashed line at E=E and a vertical dashed line at r=R sub 0 are shown.
The potential energy barrier for an α -particle bound in the nucleus: To escape from the nucleus, an α -particle with energy E must tunnel across the barrier from distance R to distance R 0 away from the center.

Field emission

Field emission is a process of emitting electrons from conducting surfaces due to a strong external electric field that is applied in the direction normal to the surface ( [link] ). As we know from our study of electric fields in earlier chapters, an applied external electric field causes the electrons in a conductor to move to its surface and stay there as long as the present external field is not excessively strong. In this situation, we have a constant electric potential throughout the inside of the conductor, including its surface. In the language of potential energy, we say that an electron inside the conductor has a constant potential energy U ( x ) = U 0 (here, the x means inside the conductor). In the situation represented in [link] , where the external electric field is uniform and has magnitude E g , if an electron happens to be outside the conductor at a distance x away from its surface, its potential energy would have to be U ( x ) = e E g x (here, x denotes distance to the surface). Taking the origin at the surface, so that x = 0 is the location of the surface, we can represent the potential energy of conduction electrons in a metal as the potential energy barrier shown in [link] . In the absence of the external field, the potential energy becomes a step barrier defined by U ( x 0 ) = U 0 and by U ( x > 0 ) = 0 .

The potential U of r is plotted as a function of r. For r less than R, U of r is constant and negative. At r = R, the potential rises vertically to some maximum positive value, then decays toward zero. The area under the curve is shaded. U of r equals E at r equal to R sub 0. A horizontal dashed line at E=E and a vertical dashed line at r=R sub 0 are shown.
A normal-direction external electric field at the surface of a conductor: In a strong field, the electrons on a conducting surface may get detached from it and accelerate against the external electric field away from the surface.
U of x is plotted as a function of x. For x less than zero, U of x has a constant value of minus U sub zero. At x=0, U of x jumps to a value of zero. For x larger than zero, U of x equals minus e times E sub g times x. The area under the curve is shaded. The energy is a negative constant, shown as a dashed line, at a value of minus phi. U of x equals E at x equal phi divided by the quantity e times E sub g.
The potential energy barrier at the surface of a metallic conductor in the presence of an external uniform electric field E g normal to the surface: It becomes a step-function barrier when the external field is removed. The work function of the metal is indicated by ϕ .

When an external electric field is strong, conduction electrons at the surface may get detached from it and accelerate along electric field lines in a direction antiparallel to the external field, away from the surface. In short, conduction electrons may escape from the surface. The field emission    can be understood as the quantum tunneling of conduction electrons through the potential barrier at the conductor’s surface. The physical principle at work here is very similar to the mechanism of α -emission from a radioactive nucleus.

Questions & Answers

what is force
Afework Reply
The different examples for collision
Afework
What is polarization and there are type
Muhammed Reply
Polarization is the process of transforming unpolarized light into polarized light. types of polarization 1. linear polarization. 2. circular polarization. 3. elliptical polarization.
Eze
Describe what you would see when looking at a body whose temperature is increased from 1000 K to 1,000,000 K
Aishwarya Reply
how is tan ninety minus an angle equals to cot an angle?
Niicommey Reply
please I don't understand all about this things going on here
Jeremiah Reply
What is torque?
Matthew Reply
In physics and mechanics, torque is the rotational equivalent of linear force. It is also referred to as the moment, moment of force, rotational force or turning effect, depending on the field of study.
Teka
Torque refers to the rotational force. i.e Torque = Force × radius.
Arun
Torque is the rotational equivalent of force . Specifically, it is a force exerted at a distance from an object's axis of rotation. In the same way that a force applied to an object will cause it to move linearly, a torque applied to an object will cause it to rotate around a pivot point.
Teka
Torque is the rotational equivalence of force . So, a net torque will cause an object to rotate with an angular acceleration. Because all rotational motions have an axis of rotation, a torque must be defined about a rotational axis. A torque is a force applied to a point on an object about the axis
Teka
When a missle is shot from one spaceship towards another, it leaves the first at 0.950c and approaches the other at 0.750c. what is the relative velocity of the two shipd
Marifel Reply
how to convert:m^3/s^2 all divided by kg to cm^3/s^2
Thibaza Reply
Is there any proof of existence of luminiferious aether ?
Zero Reply
mass conversion of 58.73kg =mg
Proactive Reply
is Space time fabric real
Godawari Reply
What's the relationship between the work function and the cut off frequency in the diagram above?
frankline Reply
due to the upthrust weight of the object varise with force in which the body fall into the water pendincular with the reflection of light with it
Gift
n=I/r
Gift
can someone explain what is going on here
falanga
so some pretty easy physics questions bring em
falanga
what is meant by fluctuated
Olasukanmi Reply
If n=cv then how v=cn? and if n=c/v then how v=cn?
Natanim
convert feet to metre
Mbah Reply
what is electrolysis
Mbah
Electrolysis is the chemical decomposition of electrolyte either in molten state or solution to conduct electricity
Ayomide
class ninekasindhtextbookurdusave
Ayesha Reply
can someone help explain why v2/c2 is =1/2 Using The Lorentz Transformation For Time Spacecraft S′ is on its way to Alpha Centauri when Spacecraft S passes it at relative speed c /2. The captain of S′ sends a radio signal that lasts 1.2 s according to that ship’s clock. Use the Lorentz transformati
Jennifer

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, University physics volume 3. OpenStax CNX. Nov 04, 2016 Download for free at http://cnx.org/content/col12067/1.4
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'University physics volume 3' conversation and receive update notifications?

Ask