<< Chapter < Page Chapter >> Page >
By the end of this section, you will be able to:
  • Describe how to set up a boundary-value problem for the stationary Schrӧdinger equation
  • Explain why the energy of a quantum particle in a box is quantized
  • Describe the physical meaning of stationary solutions to Schrӧdinger’s equation and the connection of these solutions with time-dependent quantum states
  • Explain the physical meaning of Bohr’s correspondence principle

In this section, we apply Schrӧdinger’s equation to a particle bound to a one-dimensional box. This special case provides lessons for understanding quantum mechanics in more complex systems. The energy of the particle is quantized as a consequence of a standing wave condition inside the box.

Consider a particle of mass m that is allowed to move only along the x -direction and its motion is confined to the region between hard and rigid walls located at x = 0 and at x = L ( [link] ). Between the walls, the particle moves freely. This physical situation is called the infinite square well    , described by the potential energy function

U ( x ) = { 0 , 0 x L , , otherwise .

Combining this equation with Schrӧdinger’s time-independent wave equation gives

2 2 m d 2 ψ ( x ) d x 2 = E ψ ( x ) , for 0 x L

where E is the total energy of the particle. What types of solutions do we expect? The energy of the particle is a positive number, so if the value of the wave function is positive (right side of the equation), the curvature of the wave function is negative, or concave down (left side of the equation). Similarly, if the value of the wave function is negative (right side of the equation), the curvature of the wave function is positive or concave up (left side of equation). This condition is met by an oscillating wave function, such as a sine or cosine wave. Since these waves are confined to the box, we envision standing waves with fixed endpoints at x = 0 and x = L .

The potential U is plotted as a function of x. U is equal to infinity at x equal to or less than zero, and at x equal to or greater than L. U is equal to zero between x = 0 and x = L.
The potential energy function that confines the particle in a one-dimensional box.

Solutions ψ ( x ) to this equation have a probabilistic interpretation. In particular, the square | ψ ( x ) | 2 represents the probability density of finding the particle at a particular location x . This function must be integrated to determine the probability of finding the particle in some interval of space. We are therefore looking for a normalizable solution that satisfies the following normalization condition:

0 L d x | ψ ( x ) | 2 = 1 .

The walls are rigid and impenetrable, which means that the particle is never found beyond the wall. Mathematically, this means that the solution must vanish at the walls:

ψ ( 0 ) = ψ ( L ) = 0 .

We expect oscillating solutions, so the most general solution to this equation is

ψ k ( x ) = A k cos k x + B k sin k x

where k is the wave number, and A k and B k are constants. Applying the boundary condition expressed by [link] gives

ψ k ( 0 ) = A k cos ( k · 0 ) + B k sin ( k · 0 ) = A k = 0 .

Because we have A k = 0 , the solution must be

ψ k ( x ) = B k sin k x .

If B k is zero, ψ k ( x ) = 0 for all values of x and the normalization condition, [link] , cannot be satisfied. Assuming B k 0 , [link] for x = L then gives

0 = B k sin ( k L ) sin ( k L ) = 0 k L = n π , n = 1 , 2 , 3 ,...

We discard the n = 0 solution because ψ ( x ) for this quantum number would be zero everywhere—an un-normalizable and therefore unphysical solution. Substituting [link] into [link] gives

Questions & Answers

why economics is difficult for 2nd school students.
Siraj Reply
what does mean opportunity cost?
Aster Reply
what is poetive effect of population growth
Solomon Reply
what is inflation
Nasir Reply
what is demand
Eleni
what is economics
IMLAN Reply
economics theory describes individual behavior as the result of a process of optimization under constraints the objective to be reached being determined by
Kalkidan
Economics is a branch of social science that deal with How to wise use of resource ,s
Kassie
need
WARKISA
Economic Needs: In economics, needs are goods or services that are necessary for maintaining a certain standard of living. This includes things like healthcare, education, and transportation.
Kalkidan
What is demand and supply
EMPEROR Reply
deman means?
Alex
what is supply?
Alex
ex play supply?
Alex
Money market is a branch or segment of financial market where short-term debt instruments are traded upon. The instruments in this market includes Treasury bills, Bonds, Commercial Papers, Call money among other.
murana Reply
good
Kayode
what is money market
umar Reply
Examine the distinction between theory of comparative cost Advantage and theory of factor proportion
Fatima Reply
What is inflation
Bright Reply
a general and ongoing rise in the level of prices in an economy
AI-Robot
What are the factors that affect demand for a commodity
Florence Reply
price
Kenu
differentiate between demand and supply giving examples
Lambiv Reply
differentiated between demand and supply using examples
Lambiv
what is labour ?
Lambiv
how will I do?
Venny Reply
how is the graph works?I don't fully understand
Rezat Reply
information
Eliyee
devaluation
Eliyee
t
WARKISA
hi guys good evening to all
Lambiv
multiple choice question
Aster Reply
appreciation
Eliyee
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 7

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, University physics volume 3. OpenStax CNX. Nov 04, 2016 Download for free at http://cnx.org/content/col12067/1.4
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'University physics volume 3' conversation and receive update notifications?

Ask