<< Chapter < Page Chapter >> Page >
By the end of this section, you will be able to:
  • Describe how to set up a boundary-value problem for the stationary Schrӧdinger equation
  • Explain why the energy of a quantum particle in a box is quantized
  • Describe the physical meaning of stationary solutions to Schrӧdinger’s equation and the connection of these solutions with time-dependent quantum states
  • Explain the physical meaning of Bohr’s correspondence principle

In this section, we apply Schrӧdinger’s equation to a particle bound to a one-dimensional box. This special case provides lessons for understanding quantum mechanics in more complex systems. The energy of the particle is quantized as a consequence of a standing wave condition inside the box.

Consider a particle of mass m that is allowed to move only along the x -direction and its motion is confined to the region between hard and rigid walls located at x = 0 and at x = L ( [link] ). Between the walls, the particle moves freely. This physical situation is called the infinite square well    , described by the potential energy function

U ( x ) = { 0 , 0 x L , , otherwise .

Combining this equation with Schrӧdinger’s time-independent wave equation gives

2 2 m d 2 ψ ( x ) d x 2 = E ψ ( x ) , for 0 x L

where E is the total energy of the particle. What types of solutions do we expect? The energy of the particle is a positive number, so if the value of the wave function is positive (right side of the equation), the curvature of the wave function is negative, or concave down (left side of the equation). Similarly, if the value of the wave function is negative (right side of the equation), the curvature of the wave function is positive or concave up (left side of equation). This condition is met by an oscillating wave function, such as a sine or cosine wave. Since these waves are confined to the box, we envision standing waves with fixed endpoints at x = 0 and x = L .

The potential U is plotted as a function of x. U is equal to infinity at x equal to or less than zero, and at x equal to or greater than L. U is equal to zero between x = 0 and x = L.
The potential energy function that confines the particle in a one-dimensional box.

Solutions ψ ( x ) to this equation have a probabilistic interpretation. In particular, the square | ψ ( x ) | 2 represents the probability density of finding the particle at a particular location x . This function must be integrated to determine the probability of finding the particle in some interval of space. We are therefore looking for a normalizable solution that satisfies the following normalization condition:

0 L d x | ψ ( x ) | 2 = 1 .

The walls are rigid and impenetrable, which means that the particle is never found beyond the wall. Mathematically, this means that the solution must vanish at the walls:

ψ ( 0 ) = ψ ( L ) = 0 .

We expect oscillating solutions, so the most general solution to this equation is

ψ k ( x ) = A k cos k x + B k sin k x

where k is the wave number, and A k and B k are constants. Applying the boundary condition expressed by [link] gives

ψ k ( 0 ) = A k cos ( k · 0 ) + B k sin ( k · 0 ) = A k = 0 .

Because we have A k = 0 , the solution must be

ψ k ( x ) = B k sin k x .

If B k is zero, ψ k ( x ) = 0 for all values of x and the normalization condition, [link] , cannot be satisfied. Assuming B k 0 , [link] for x = L then gives

0 = B k sin ( k L ) sin ( k L ) = 0 k L = n π , n = 1 , 2 , 3 ,...

We discard the n = 0 solution because ψ ( x ) for this quantum number would be zero everywhere—an un-normalizable and therefore unphysical solution. Substituting [link] into [link] gives

Questions & Answers

what is microbiology
Agebe Reply
What is a cell
Odelana Reply
what is cell
Mohammed
how does Neisseria cause meningitis
Nyibol Reply
what is microbiologist
Muhammad Reply
what is errata
Muhammad
is the branch of biology that deals with the study of microorganisms.
Ntefuni Reply
What is microbiology
Mercy Reply
studies of microbes
Louisiaste
when we takee the specimen which lumbar,spin,
Ziyad Reply
How bacteria create energy to survive?
Muhamad Reply
Bacteria doesn't produce energy they are dependent upon their substrate in case of lack of nutrients they are able to make spores which helps them to sustain in harsh environments
_Adnan
But not all bacteria make spores, l mean Eukaryotic cells have Mitochondria which acts as powerhouse for them, since bacteria don't have it, what is the substitution for it?
Muhamad
they make spores
Louisiaste
what is sporadic nd endemic, epidemic
Aminu Reply
the significance of food webs for disease transmission
Abreham
food webs brings about an infection as an individual depends on number of diseased foods or carriers dully.
Mark
explain assimilatory nitrate reduction
Esinniobiwa Reply
Assimilatory nitrate reduction is a process that occurs in some microorganisms, such as bacteria and archaea, in which nitrate (NO3-) is reduced to nitrite (NO2-), and then further reduced to ammonia (NH3).
Elkana
This process is called assimilatory nitrate reduction because the nitrogen that is produced is incorporated in the cells of microorganisms where it can be used in the synthesis of amino acids and other nitrogen products
Elkana
Examples of thermophilic organisms
Shu Reply
Give Examples of thermophilic organisms
Shu
advantages of normal Flora to the host
Micheal Reply
Prevent foreign microbes to the host
Abubakar
they provide healthier benefits to their hosts
ayesha
They are friends to host only when Host immune system is strong and become enemies when the host immune system is weakened . very bad relationship!
Mark
what is cell
faisal Reply
cell is the smallest unit of life
Fauziya
cell is the smallest unit of life
Akanni
ok
Innocent
cell is the structural and functional unit of life
Hasan
is the fundamental units of Life
Musa
what are emergency diseases
Micheal Reply
There are nothing like emergency disease but there are some common medical emergency which can occur simultaneously like Bleeding,heart attack,Breathing difficulties,severe pain heart stock.Hope you will get my point .Have a nice day ❣️
_Adnan
define infection ,prevention and control
Innocent
I think infection prevention and control is the avoidance of all things we do that gives out break of infections and promotion of health practices that promote life
Lubega
Heyy Lubega hussein where are u from?
_Adnan
en français
Adama
which site have a normal flora
ESTHER Reply
Many sites of the body have it Skin Nasal cavity Oral cavity Gastro intestinal tract
Safaa
skin
Asiina
skin,Oral,Nasal,GIt
Sadik
How can Commensal can Bacteria change into pathogen?
Sadik
How can Commensal Bacteria change into pathogen?
Sadik
all
Tesfaye
by fussion
Asiina
what are the advantages of normal Flora to the host
Micheal
what are the ways of control and prevention of nosocomial infection in the hospital
Micheal
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 7

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, University physics volume 3. OpenStax CNX. Nov 04, 2016 Download for free at http://cnx.org/content/col12067/1.4
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'University physics volume 3' conversation and receive update notifications?

Ask