<< Chapter < Page Chapter >> Page >
By the end of this section, you will be able to:
  • Describe how to set up a boundary-value problem for the stationary Schrӧdinger equation
  • Explain why the energy of a quantum particle in a box is quantized
  • Describe the physical meaning of stationary solutions to Schrӧdinger’s equation and the connection of these solutions with time-dependent quantum states
  • Explain the physical meaning of Bohr’s correspondence principle

In this section, we apply Schrӧdinger’s equation to a particle bound to a one-dimensional box. This special case provides lessons for understanding quantum mechanics in more complex systems. The energy of the particle is quantized as a consequence of a standing wave condition inside the box.

Consider a particle of mass m that is allowed to move only along the x -direction and its motion is confined to the region between hard and rigid walls located at x = 0 and at x = L ( [link] ). Between the walls, the particle moves freely. This physical situation is called the infinite square well    , described by the potential energy function

U ( x ) = { 0 , 0 x L , , otherwise .

Combining this equation with Schrӧdinger’s time-independent wave equation gives

2 2 m d 2 ψ ( x ) d x 2 = E ψ ( x ) , for 0 x L

where E is the total energy of the particle. What types of solutions do we expect? The energy of the particle is a positive number, so if the value of the wave function is positive (right side of the equation), the curvature of the wave function is negative, or concave down (left side of the equation). Similarly, if the value of the wave function is negative (right side of the equation), the curvature of the wave function is positive or concave up (left side of equation). This condition is met by an oscillating wave function, such as a sine or cosine wave. Since these waves are confined to the box, we envision standing waves with fixed endpoints at x = 0 and x = L .

The potential U is plotted as a function of x. U is equal to infinity at x equal to or less than zero, and at x equal to or greater than L. U is equal to zero between x = 0 and x = L.
The potential energy function that confines the particle in a one-dimensional box.

Solutions ψ ( x ) to this equation have a probabilistic interpretation. In particular, the square | ψ ( x ) | 2 represents the probability density of finding the particle at a particular location x . This function must be integrated to determine the probability of finding the particle in some interval of space. We are therefore looking for a normalizable solution that satisfies the following normalization condition:

0 L d x | ψ ( x ) | 2 = 1 .

The walls are rigid and impenetrable, which means that the particle is never found beyond the wall. Mathematically, this means that the solution must vanish at the walls:

ψ ( 0 ) = ψ ( L ) = 0 .

We expect oscillating solutions, so the most general solution to this equation is

ψ k ( x ) = A k cos k x + B k sin k x

where k is the wave number, and A k and B k are constants. Applying the boundary condition expressed by [link] gives

ψ k ( 0 ) = A k cos ( k · 0 ) + B k sin ( k · 0 ) = A k = 0 .

Because we have A k = 0 , the solution must be

ψ k ( x ) = B k sin k x .

If B k is zero, ψ k ( x ) = 0 for all values of x and the normalization condition, [link] , cannot be satisfied. Assuming B k 0 , [link] for x = L then gives

0 = B k sin ( k L ) sin ( k L ) = 0 k L = n π , n = 1 , 2 , 3 ,...

We discard the n = 0 solution because ψ ( x ) for this quantum number would be zero everywhere—an un-normalizable and therefore unphysical solution. Substituting [link] into [link] gives

Questions & Answers

what are components of cells
ofosola Reply
twugzfisfjxxkvdsifgfuy7 it
Sami
58214993
Sami
what is a salt
John
the difference between male and female reproduction
John
what is computed
IBRAHIM Reply
what is biology
IBRAHIM
what is the full meaning of biology
IBRAHIM
what is biology
Jeneba
what is cell
Kuot
425844168
Sami
what is cytoplasm
Emmanuel Reply
structure of an animal cell
Arrey Reply
what happens when the eustachian tube is blocked
Puseletso Reply
what's atoms
Achol Reply
discuss how the following factors such as predation risk, competition and habitat structure influence animal's foraging behavior in essay form
Burnet Reply
cell?
Kuot
location of cervical vertebra
KENNEDY Reply
What are acid
Sheriff Reply
define biology infour way
Happiness Reply
What are types of cell
Nansoh Reply
how can I get this book
Gatyin Reply
what is lump
Chineye Reply
what is cell
Maluak Reply
what is biology
Maluak
what is vertibrate
Jeneba
what's cornea?
Majak Reply
what are cell
Achol
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 7

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, University physics volume 3. OpenStax CNX. Nov 04, 2016 Download for free at http://cnx.org/content/col12067/1.4
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'University physics volume 3' conversation and receive update notifications?

Ask