<< Chapter < Page | Chapter >> Page > |
Bohr’s model of the hydrogen atom also correctly predicts the spectra of some hydrogen-like ions. Hydrogen-like ions are atoms of elements with an atomic number Z larger than one ( for hydrogen) but with all electrons removed except one. For example, an electrically neutral helium atom has an atomic number This means it has two electrons orbiting the nucleus with a charge of When one of the orbiting electrons is removed from the helium atom (we say, when the helium atom is singly ionized), what remains is a hydrogen-like atomic structure where the remaining electron orbits the nucleus with a charge of This type of situation is described by the Bohr model. Assuming that the charge of the nucleus is not but we can repeat all steps, beginning with [link] , to obtain the results for a hydrogen-like ion:
where is the Bohr orbit of hydrogen, and
where is the ionization limit of a hydrogen atom. These equations are good approximations as long as the atomic number Z is not too large.
The Bohr model is important because it was the first model to postulate the quantization of electron orbits in atoms. Thus, it represents an early quantum theory that gave a start to developing modern quantum theory. It introduced the concept of a quantum number to describe atomic states. The limitation of the early quantum theory is that it cannot describe atoms in which the number of electrons orbiting the nucleus is larger than one. The Bohr model of hydrogen is a semi-classical model because it combines the classical concept of electron orbits with the new concept of quantization. The remarkable success of this model prompted many physicists to seek an explanation for why such a model should work at all, and to seek an understanding of the physics behind the postulates of early quantum theory. This search brought about the onset of an entirely new concept of “matter waves.”
Notification Switch
Would you like to follow the 'University physics volume 3' conversation and receive update notifications?