<< Chapter < Page Chapter >> Page >
By the end of this section, you will be able to:
  • Describe interference and diffraction effects exhibited by X-rays in interaction with atomic-scale structures

Since X-ray photons are very energetic, they have relatively short wavelengths, on the order of 10 −8 m to 10 −12 m. Thus, typical X-ray photons act like rays when they encounter macroscopic objects, like teeth, and produce sharp shadows. However, since atoms are on the order of 0.1 nm in size, X-rays can be used to detect the location, shape, and size of atoms and molecules. The process is called X-ray diffraction    , and it involves the interference of X-rays to produce patterns that can be analyzed for information about the structures that scattered the X-rays.

Perhaps the most famous example of X-ray diffraction is the discovery of the double-helical structure of DNA in 1953 by an international team of scientists working at England’s Cavendish Laboratory—American James Watson, Englishman Francis Crick, and New Zealand-born Maurice Wilkins. Using X-ray diffraction data produced by Rosalind Franklin, they were the first to model the double-helix structure of DNA that is so crucial to life. For this work, Watson, Crick, and Wilkins were awarded the 1962 Nobel Prize in Physiology or Medicine. (There is some debate and controversy over the issue that Rosalind Franklin was not included in the prize, although she died in 1958, before the prize was awarded.)

[link] shows a diffraction pattern produced by the scattering of X-rays from a crystal. This process is known as X-ray crystallography because of the information it can yield about crystal structure, and it was the type of data Rosalind Franklin supplied to Watson and Crick for DNA. Not only do X-rays confirm the size and shape of atoms, they give information about the atomic arrangements in materials. For example, more recent research in high-temperature superconductors involves complex materials whose lattice arrangements are crucial to obtaining a superconducting material. These can be studied using X-ray crystallography.

Figure shows a white background with a pattern of black dotted lines. There is a bright white spot in the center surrounded by a grey ring. A white line goes up and left from the spot.
X-ray diffraction from the crystal of a protein (hen egg lysozyme) produced this interference pattern. Analysis of the pattern yields information about the structure of the protein. (credit: “Del45”/Wikimedia Commons)

Historically, the scattering of X-rays from crystals was used to prove that X-rays are energetic electromagnetic (EM) waves. This was suspected from the time of the discovery of X-rays in 1895, but it was not until 1912 that the German Max von Laue (1879–1960) convinced two of his colleagues to scatter X-rays from crystals. If a diffraction pattern is obtained, he reasoned, then the X-rays must be waves, and their wavelength could be determined. (The spacing of atoms in various crystals was reasonably well known at the time, based on good values for Avogadro’s number.) The experiments were convincing, and the 1914 Nobel Prize in Physics was given to von Laue for his suggestion leading to the proof that X-rays are EM waves. In 1915, the unique father-and-son team of Sir William Henry Bragg and his son Sir William Lawrence Bragg were awarded a joint Nobel Prize for inventing the X-ray spectrometer and the then-new science of X-ray analysis.

Questions & Answers

what is force
Afework Reply
The different examples for collision
Afework
What is polarization and there are type
Muhammed Reply
Polarization is the process of transforming unpolarized light into polarized light. types of polarization 1. linear polarization. 2. circular polarization. 3. elliptical polarization.
Eze
Describe what you would see when looking at a body whose temperature is increased from 1000 K to 1,000,000 K
Aishwarya Reply
how is tan ninety minus an angle equals to cot an angle?
Niicommey Reply
please I don't understand all about this things going on here
Jeremiah Reply
What is torque?
Matthew Reply
In physics and mechanics, torque is the rotational equivalent of linear force. It is also referred to as the moment, moment of force, rotational force or turning effect, depending on the field of study.
Teka
Torque refers to the rotational force. i.e Torque = Force × radius.
Arun
Torque is the rotational equivalent of force . Specifically, it is a force exerted at a distance from an object's axis of rotation. In the same way that a force applied to an object will cause it to move linearly, a torque applied to an object will cause it to rotate around a pivot point.
Teka
Torque is the rotational equivalence of force . So, a net torque will cause an object to rotate with an angular acceleration. Because all rotational motions have an axis of rotation, a torque must be defined about a rotational axis. A torque is a force applied to a point on an object about the axis
Teka
When a missle is shot from one spaceship towards another, it leaves the first at 0.950c and approaches the other at 0.750c. what is the relative velocity of the two shipd
Marifel Reply
how to convert:m^3/s^2 all divided by kg to cm^3/s^2
Thibaza Reply
Is there any proof of existence of luminiferious aether ?
Zero Reply
mass conversion of 58.73kg =mg
Proactive Reply
is Space time fabric real
Godawari Reply
What's the relationship between the work function and the cut off frequency in the diagram above?
frankline Reply
due to the upthrust weight of the object varise with force in which the body fall into the water pendincular with the reflection of light with it
Gift
n=I/r
Gift
can someone explain what is going on here
falanga
so some pretty easy physics questions bring em
falanga
what is meant by fluctuated
Olasukanmi Reply
If n=cv then how v=cn? and if n=c/v then how v=cn?
Natanim
convert feet to metre
Mbah Reply
what is electrolysis
Mbah
Electrolysis is the chemical decomposition of electrolyte either in molten state or solution to conduct electricity
Ayomide
class ninekasindhtextbookurdusave
Ayesha Reply
can someone help explain why v2/c2 is =1/2 Using The Lorentz Transformation For Time Spacecraft S′ is on its way to Alpha Centauri when Spacecraft S passes it at relative speed c /2. The captain of S′ sends a radio signal that lasts 1.2 s according to that ship’s clock. Use the Lorentz transformati
Jennifer
Practice Key Terms 2

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, University physics volume 3. OpenStax CNX. Nov 04, 2016 Download for free at http://cnx.org/content/col12067/1.4
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'University physics volume 3' conversation and receive update notifications?

Ask