<< Chapter < Page Chapter >> Page >
Figure a is a photograph of an opal pendant reflecting various colours. Figure b is the photograph of a butterfly.
(a) This Australian opal and (b) butterfly wings have rows of reflectors that act like reflection gratings, reflecting different colors at different angles. (credit b: modification of work by “whologwhy”/Flickr)

Applications of diffraction gratings

Where are diffraction gratings used in applications? Diffraction gratings are commonly used for spectroscopic dispersion and analysis of light. What makes them particularly useful is the fact that they form a sharper pattern than double slits do. That is, their bright fringes are narrower and brighter while their dark regions are darker. Diffraction gratings are key components of monochromators used, for example, in optical imaging of particular wavelengths from biological or medical samples. A diffraction grating can be chosen to specifically analyze a wavelength emitted by molecules in diseased cells in a biopsy sample or to help excite strategic molecules in the sample with a selected wavelength of light. Another vital use is in optical fiber technologies where fibers are designed to provide optimum performance at specific wavelengths. A range of diffraction gratings are available for selecting wavelengths for such use.

Calculating typical diffraction grating effects

Diffraction gratings with 10,000 lines per centimeter are readily available. Suppose you have one, and you send a beam of white light through it to a screen 2.00 m away. (a) Find the angles for the first-order diffraction of the shortest and longest wavelengths of visible light (380 and 760 nm, respectively). (b) What is the distance between the ends of the rainbow of visible light produced on the screen for first-order interference? (See [link] .)

A vertical line on the left is labeled grating and one on the right is labeled screen. They are a distance x equal to 2 meters apart. Four arrows radiate from the grating to the screen. The first and second from the top make angles theta R and theta V respectively with the central axis. The points where they fall on the screen are at distances yR and yV respectively from the central axis. Rainbows are formed on the screen between the first and second arrow and between the third and fourth arrow.
(a) The diffraction grating considered in this example produces a rainbow of colors on a screen a distance x = 2.00 m from the grating. The distances along the screen are measured perpendicular to the x -direction. In other words, the rainbow pattern extends out of the page.
(b) In a bird’s-eye view, the rainbow pattern can be seen on a table where the equipment is placed.

Strategy

Once a value for the diffraction grating’s slit spacing d has been determined, the angles for the sharp lines can be found using the equation

d sin θ = m λ for m = 0 , ± 1 , ± 2 , ... .

Since there are 10,000 lines per centimeter, each line is separated by 1/10,000 of a centimeter. Once we know the angles, we an find the distances along the screen by using simple trigonometry.

Solution

  1. The distance between slits is d = ( 1 cm ) / 10 , 000 = 1.00 × 10 −4 cm or 1.00 × 10 −6 m . Let us call the two angles θ V for violet (380 nm) and θ R for red (760 nm). Solving the equation d sin θ V = m λ for sin θ V ,
    sin θ V = m λ V d ,

    where m = 1 for the first-order and λ V = 380 nm = 3.80 × 10 −7 m . Substituting these values gives
    sin θ V = 3.80 × 10 −7 m 1.00 × 10 −6 m = 0.380 .

    Thus the angle θ V is
    θ V = sin −1 0.380 = 22.33 ° .

    Similarly,
    sin θ R = 7.60 × 10 −7 m 1.00 × 10 −6 m = 0.760 .

    Thus the angle θ R is
    θ R = sin −1 0.760 = 49.46 ° .

    Notice that in both equations, we reported the results of these intermediate calculations to four significant figures to use with the calculation in part (b).
  2. The distances on the secreen are labeled y V and y R in [link] . Notice that tan θ = y / x . We can solve for y V and y R . That is,
    y V = x tan θ V = ( 2.00 m ) ( tan 22.33 ° ) = 0.815 m

    and
    y R = x tan θ R = ( 2.00 m ) ( tan 49.46 ° ) = 2.338 m .

    The distance between them is therefore
    y R y V = 1.523 m .

Questions & Answers

what is force
Afework Reply
The different examples for collision
Afework
What is polarization and there are type
Muhammed Reply
Polarization is the process of transforming unpolarized light into polarized light. types of polarization 1. linear polarization. 2. circular polarization. 3. elliptical polarization.
Eze
Describe what you would see when looking at a body whose temperature is increased from 1000 K to 1,000,000 K
Aishwarya Reply
how is tan ninety minus an angle equals to cot an angle?
Niicommey Reply
please I don't understand all about this things going on here
Jeremiah Reply
What is torque?
Matthew Reply
In physics and mechanics, torque is the rotational equivalent of linear force. It is also referred to as the moment, moment of force, rotational force or turning effect, depending on the field of study.
Teka
Torque refers to the rotational force. i.e Torque = Force × radius.
Arun
Torque is the rotational equivalent of force . Specifically, it is a force exerted at a distance from an object's axis of rotation. In the same way that a force applied to an object will cause it to move linearly, a torque applied to an object will cause it to rotate around a pivot point.
Teka
Torque is the rotational equivalence of force . So, a net torque will cause an object to rotate with an angular acceleration. Because all rotational motions have an axis of rotation, a torque must be defined about a rotational axis. A torque is a force applied to a point on an object about the axis
Teka
When a missle is shot from one spaceship towards another, it leaves the first at 0.950c and approaches the other at 0.750c. what is the relative velocity of the two shipd
Marifel Reply
how to convert:m^3/s^2 all divided by kg to cm^3/s^2
Thibaza Reply
Is there any proof of existence of luminiferious aether ?
Zero Reply
mass conversion of 58.73kg =mg
Proactive Reply
is Space time fabric real
Godawari Reply
What's the relationship between the work function and the cut off frequency in the diagram above?
frankline Reply
due to the upthrust weight of the object varise with force in which the body fall into the water pendincular with the reflection of light with it
Gift
n=I/r
Gift
can someone explain what is going on here
falanga
so some pretty easy physics questions bring em
falanga
what is meant by fluctuated
Olasukanmi Reply
If n=cv then how v=cn? and if n=c/v then how v=cn?
Natanim
convert feet to metre
Mbah Reply
what is electrolysis
Mbah
Electrolysis is the chemical decomposition of electrolyte either in molten state or solution to conduct electricity
Ayomide
class ninekasindhtextbookurdusave
Ayesha Reply
can someone help explain why v2/c2 is =1/2 Using The Lorentz Transformation For Time Spacecraft S′ is on its way to Alpha Centauri when Spacecraft S passes it at relative speed c /2. The captain of S′ sends a radio signal that lasts 1.2 s according to that ship’s clock. Use the Lorentz transformati
Jennifer
Practice Key Terms 1

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, University physics volume 3. OpenStax CNX. Nov 04, 2016 Download for free at http://cnx.org/content/col12067/1.4
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'University physics volume 3' conversation and receive update notifications?

Ask