At the larger angle shown in part (c), the path lengths differ by
for rays from the top and bottom of the slit. One ray travels a distance
different from the ray from the bottom and arrives in phase, interfering constructively. Two rays, each from slightly above those two, also add constructively. Most rays from the slit have another ray to interfere with constructively, and a maximum in intensity occurs at this angle. However, not all rays interfere constructively for this situation, so the maximum is not as intense as the central maximum. Finally, in part (d), the angle shown is large enough to produce a second minimum. As seen in the figure, the difference in path length for rays from either side of the slit is
D sin
, and we see that a destructive minimum is obtained when this distance is an integral multiple of the wavelength.
Thus, to obtain
destructive interference for a single slit ,
where
D is the slit width,
is the light’s wavelength,
is the angle relative to the original direction of the light, and
m is the order of the minimum.
[link] shows a graph of intensity for single-slit interference, and it is apparent that the maxima on either side of the central maximum are much less intense and not as wide. This effect is explored in
Double-Slit Diffraction .
Calculating single-slit diffraction
Visible light of wavelength 550 nm falls on a single slit and produces its second diffraction minimum at an angle of
relative to the incident direction of the light, as in
[link] . (a) What is the width of the slit? (b) At what angle is the first minimum produced?
Strategy
From the given information, and assuming the screen is far away from the slit, we can use the equation
first to find
D , and again to find the angle for the first minimum
Solution
We are given that
,
, and
. Solving the equation
for
D and substituting known values gives
Solving the equation
for
and substituting the known values gives
Thus the angle
is
Significance
We see that the slit is narrow (it is only a few times greater than the wavelength of light). This is consistent with the fact that light must interact with an object comparable in size to its wavelength in order to exhibit significant wave effects such as this single-slit diffraction pattern. We also see that the central maximum extends
on either side of the original beam, for a width of about
. The angle between the first and second minima is only about
. Thus, the second maximum is only about half as wide as the central maximum.
Polarization is the process of transforming unpolarized light into polarized light.
types of polarization
1. linear polarization.
2. circular polarization.
3. elliptical polarization.
Eze
Describe what you would see when looking at a body whose temperature is increased from 1000 K to 1,000,000 K
In physics and mechanics, torque is the rotational
equivalent of linear force. It is also referred to as the
moment, moment of force, rotational force or turning
effect, depending on the field of study.
Teka
Torque refers to the rotational force. i.e Torque = Force × radius.
Arun
Torque is the rotational equivalent of force .
Specifically, it is a force exerted at a distance
from an object's axis of rotation. In the same way
that a force applied to an object will cause it to
move linearly, a torque applied to an object will
cause it to rotate around a pivot point.
Teka
Torque is the rotational equivalence of force . So,
a net torque will cause an object to rotate with an
angular acceleration. Because all rotational
motions have an axis of rotation, a torque must
be defined about a rotational axis. A torque is a
force applied to a point on an object about the
axis
Teka
When a missle is shot from one spaceship towards another, it leaves the first at 0.950c and approaches the other at 0.750c. what is the relative velocity of the two shipd
can someone help explain why v2/c2 is =1/2
Using The Lorentz Transformation For Time
Spacecraft S′ is on its way to Alpha Centauri when Spacecraft S passes it at relative speed c /2. The captain of S′ sends a radio signal that lasts 1.2 s according to that ship’s clock. Use the Lorentz transformati