<< Chapter < Page Chapter >> Page >

Trace rays to find which way the given ray will emerge after refraction through the thin lens in the following figure. Assume thin-lens approximation. ( Hin t: Pick a point P on the given ray in each case. Treat that point as an object. Now, find its image Q . Use the rule: All rays on the other side of the lens will either go through Q or appear to be coming from Q .)

Figure a shows a ray not parallel to the optical axis striking a bi-convex lens. Figure a shows a ray not parallel to the optical axis striking a bi-concave lens.

Answers will vary.

Got questions? Get instant answers now!

Copy and draw rays to find the final image in the following diagram. ( Hint : Find the intermediate image through lens alone. Use the intermediate image as the object for the mirror and work with the mirror alone to find the final image.)

Figure shows from left to right: an object with base O on the optical axis and tip P, a bi-convex lens and a concave mirror with center of curvature C. The focal point of the bi-convex on the object side is labeled F subscript 1 and that on the mirror side is labeled F subscript 2.
Got questions? Get instant answers now!

A concave mirror of radius of curvature 10 cm is placed 30 cm from a thin convex lens of focal length 15 cm. Find the location and magnification of a small bulb sitting 50 cm from the lens by using the algebraic method.

12 cm to the left of the mirror, m = 3 / 5

Got questions? Get instant answers now!

An object of height 3 cm is placed at 25 cm in front of a converging lens of focal length 20 cm. Behind the lens there is a concave mirror of focal length 20 cm. The distance between the lens and the mirror is 5 cm. Find the location, orientation and size of the final image.

Got questions? Get instant answers now!

An object of height 3 cm is placed at a distance of 25 cm in front of a converging lens of focal length 20 cm, to be referred to as the first lens. Behind the lens there is another converging lens of focal length 20 cm placed 10 cm from the first lens. There is a concave mirror of focal length 15 cm placed 50 cm from the second lens. Find the location, orientation, and size of the final image.

27 cm in front of the mirror, m = 0.6 , h i = 1.76 cm , orientation upright

Got questions? Get instant answers now!

An object of height 2 cm is placed at 50 cm in front of a diverging lens of focal length 40 cm. Behind the lens, there is a convex mirror of focal length 15 cm placed 30 cm from the converging lens. Find the location, orientation, and size of the final image.

Got questions? Get instant answers now!

Two concave mirrors are placed facing each other. One of them has a small hole in the middle. A penny is placed on the bottom mirror (see the following figure). When you look from the side, a real image of the penny is observed above the hole. Explain how that could happen.

Figure shows the side view of two concave mirrors placed one on top of the other, facing each other. The top one has a small hole in the middle. A penny is placed on the bottom mirror. An image of the penny is shown above the top mirror, just above the hole.

The following figure shows three successive images beginning with the image Q 1 in mirror M 1 . Q 1 is the image in mirror M 1 , whose image in mirror M 2 is Q 12 whose image in mirror M 1 is the real image Q 121 .
Figure shows the side view of two concave mirrors, M1 and M2 placed one on top of the other, facing each other. The top, M2, one has a small hole in the middle. A penny is placed on the bottom mirror. An image of the penny labeled Q subscript 1 is shown below M1. Another image of the penny, labeled Q subscript 121 is shown above the top mirror. This is labeled real image.

Got questions? Get instant answers now!

A lamp of height 5 cm is placed 40 cm in front of a converging lens of focal length 20 cm. There is a plane mirror 15 cm behind the lens. Where would you find the image when you look in the mirror?

Got questions? Get instant answers now!

Parallel rays from a faraway source strike a converging lens of focal length 20 cm at an angle of 15 degrees with the horizontal direction. Find the vertical position of the real image observed on a screen in the focal plane.

5.4 cm from the axis

Got questions? Get instant answers now!

Parallel rays from a faraway source strike a diverging lens of focal length 20 cm at an angle of 10 degrees with the horizontal direction. As you look through the lens, where in the vertical plane the image would appear?

Got questions? Get instant answers now!

A light bulb is placed 10 cm from a plane mirror, which faces a convex mirror of radius of curvature 8 cm. The plane mirror is located at a distance of 30 cm from the vertex of the convex mirror. Find the location of two images in the convex mirror. Are there other images? If so, where are they located?

Let the vertex of the concave mirror be the origin of the coordinate system. Image 1 is at −10/3 cm (−3.3 cm), image 2 is at −40/11 cm (−3.6 cm). These serve as objects for subsequent images, which are at −310/83 cm (−3.7 cm), −9340/2501 cm (−3.7 cm), −140,720/37,681 cm (−3.7 cm). All remaining images are at approximately −3.7 cm.

Got questions? Get instant answers now!
Practice Key Terms 6

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, University physics volume 3. OpenStax CNX. Nov 04, 2016 Download for free at http://cnx.org/content/col12067/1.4
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'University physics volume 3' conversation and receive update notifications?

Ask