<< Chapter < Page Chapter >> Page >
M = θ image θ object .

To obtain an expression for the magnification that involves only the lens parameters, note that the focal plane of the objective lens lies very close to the focal plan of the eyepiece. If we assume that these planes are superposed, we have the situation shown in [link] .

Rays at an angle theta subscript object enter a bi-convex objective lens and converge on the other side at the focal point. From here, they enter a bi-convex eyepiece lens and emerge as parallel rays forming an angle theta subscript image with the optical axis.
The focal plane of the objective lens of a telescope is very near to the focal plane of the eyepiece. The angle θ image subtended by the image viewed through the eyepiece is larger than the angle θ object subtended by the object when viewed with the unaided eye.

We further assume that the angles θ object and θ image are small, so that the small-angle approximation holds ( tan θ θ ). If the image formed at the focal plane has height h , then

θ object tan θ object = h f obj θ image tan θ image = h f eye

where the minus sign is introduced because the height is negative if we measure both angles in the counterclockwise direction. Inserting these expressions into [link] gives

M = h i f eye f obj h i = f obj f eye .

Thus, to obtain the greatest angular magnification, it is best to have an objective with a long focal length and an eyepiece with a short focal length. The greater the angular magnification M , the larger an object will appear when viewed through a telescope, making more details visible. Limits to observable details are imposed by many factors, including lens quality and atmospheric disturbance. Typical eyepieces have focal lengths of 2.5 cm or 1.25 cm. If the objective of the telescope has a focal length of 1 meter, then these eyepieces result in magnifications of 40 × and 80 × , respectively. Thus, the angular magnifications make the image appear 40 times or 80 times closer than the real object.

The minus sign in the magnification indicates the image is inverted, which is unimportant for observing the stars but is a real problem for other applications, such as telescopes on ships or telescopic gun sights. If an upright image is needed, Galileo’s arrangement in part (a) of [link] can be used. But a more common arrangement is to use a third convex lens as an eyepiece, increasing the distance between the first two and inverting the image once again, as seen in [link] .

Parallel rays at an angle to the optical axis enter a bi-convex objective lens and converge on the other side to form a tiny, inverted image of a tree at the focal point of the objective. From here, the rays pass through another bi-convex lens labeled erecting lens and converge on the other side to form a small upright image of the tree. From here, the rays pass through a bi-convex eyepiece and enter the eye. The back extensions of these converge to form an enlarged upright image of the tree labeled final image. This lies between the first image and the erecting lens.
This arrangement of three lenses in a telescope produces an upright final image. The first two lenses are far enough apart that the second lens inverts the image of the first. The third lens acts as a magnifier and keeps the image upright and in a location that is easy to view.

The largest refracting telescope in the world is the 40-inch diameter Yerkes telescope located at Lake Geneva, Wisconsin ( [link] ), and operated by the University of Chicago.

It is very difficult and expensive to build large refracting telescopes. You need large defect-free lenses, which in itself is a technically demanding task. A refracting telescope basically looks like a tube with a support structure to rotate it in different directions. A refracting telescope suffers from several problems. The aberration of lenses causes the image to be blurred. Also, as the lenses become thicker for larger lenses, more light is absorbed, making faint stars more difficult to observe. Large lenses are also very heavy and deform under their own weight. Some of these problems with refracting telescopes are addressed by avoiding refraction for collecting light and instead using a curved mirror in its place, as devised by Isaac Newton. These telescopes are called reflecting telescopes.

Practice Key Terms 6

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, University physics volume 3. OpenStax CNX. Nov 04, 2016 Download for free at http://cnx.org/content/col12067/1.4
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'University physics volume 3' conversation and receive update notifications?

Ask