<< Chapter < Page | Chapter >> Page > |
From part (b) of the figure, we see that the absolute value of the image distance is . Note that because the image is virtual, so we can dispense with the absolute value by explicitly inserting the minus sign: . Inserting this into [link] gives us the final equation for the angular magnification of a magnifying lens:
Note that all the quantities in this equation have to be expressed in centimeters. Often, we want the image to be at the near-point distance ( ) to get maximum magnification, and we hold the magnifying lens close to the eye ( ). In this case, [link] gives
which shows that the greatest magnification occurs for the lens with the shortest focal length. In addition, when the image is at the near-point distance and the lens is held close to the eye , then and [link] becomes
where m is the linear magnification ( [link] ) derived for spherical mirrors and thin lenses. Another useful situation is when the image is at infinity . [link] then takes the form
The resulting magnification is simply the ratio of the near-point distance to the focal length of the magnifying lens, so a lens with a shorter focal length gives a stronger magnification. Although this magnification is smaller by 1 than the magnification obtained with the image at the near point, it provides for the most comfortable viewing conditions, because the eye is relaxed when viewing a distant object.
By comparing [link] with [link] , we see that the range of angular magnification of a given converging lens is
(a) What should the focal length of the magnifying lens be to see a 15-mm-diameter image of the diamond?
(b) What should the focal length of the magnifying lens be to obtain magnification?
If the image formed on the retina subtends an angle of and the object subtends an angle of , what is the magnification of the image?
What is the magnification of a magnifying lens with a focal length of 10 cm if it is held 3.0 cm from the eye and the object is 12 cm from the eye?
How far should you hold a 2.1 cm-focal length magnifying glass from an object to obtain a magnification of ? Assume you place your eye 5.0 cm from the magnifying glass.
You hold a 5.0 cm-focal length magnifying glass as close as possible to your eye. If you have a normal near point, what is the magnification?
You view a mountain with a magnifying glass of focal length . What is the magnification?
You view an object by holding a 2.5 cm-focal length magnifying glass 10 cm away from it. How far from your eye should you hold the magnifying glass to obtain a magnification of
A magnifying glass forms an image 10 cm on the opposite side of the lens from the object, which is 10 cm away. What is the magnification of this lens for a person with a normal near point if their eye 12 cm from the object?
An object viewed with the naked eye subtends a angle. If you view the object through a magnifying glass, what angle is subtended by the image formed on your retina?
For a normal, relaxed eye, a magnifying glass produces an angular magnification of 4.0. What is the largest magnification possible with this magnifying glass?
What range of magnification is possible with a 7.0 cm-focal length converging lens?
A magnifying glass produces an angular magnification of 4.5 when used by a young person with a near point of 18 cm. What is the maximum angular magnification obtained by an older person with a near point of 45 cm?
Notification Switch
Would you like to follow the 'University physics volume 3' conversation and receive update notifications?