<< Chapter < Page Chapter >> Page >

Vision correction

The need for some type of vision correction is very common. Typical vision defects are easy to understand with geometric optics, and some are simple to correct. [link] illustrates two common vision defects. Nearsightedness , or myopia , is the ability to see near objects, whereas distant objects are blurry. The eye overconverges the nearly parallel rays from a distant object, and the rays cross in front of the retina. More divergent rays from a close object are converged on the retina for a clear image. The distance to the farthest object that can be seen clearly is called the far point of the eye (normally the far point is at infinity). Farsightedness , or hyperopia , is the ability to see far objects clearly, whereas near objects are blurry. A farsighted eye does not sufficiently converge the rays from a near object to make the rays meet on the retina.

Figure a shows two eyes labeled “lens too strong” and “eye too long”. In both cases, parallel rays striking the cornea converge in front of the retina. Figure b shows two eyes labeled “lens too weak” and “eye too short”. In both cases, parallel rays striking the cornea converge behind the retina.
(a) The nearsighted (myopic) eye converges rays from a distant object in front of the retina, so they have diverged when they strike the retina, producing a blurry image. An eye lens that is too powerful can cause nearsightedness, or the eye may be too long. (b) The farsighted (hyperopic) eye is unable to converge the rays from a close object on the retina, producing blurry near-field vision. An eye lens with insufficient optical power or an eye that is too short can cause farsightedness.

Since the nearsighted eye overconverges light rays, the correction for nearsightedness consists of placing a diverging eyeglass lens in front of the eye, as shown in [link] . This reduces the optical power of an eye that is too powerful (recall that the focal length of a diverging lens is negative, so its optical power is negative). Another way to understand this correction is that a diverging lens will cause the incoming rays to diverge more to compensate for the excessive convergence caused by the lens system of the eye. The image produced by the diverging eyeglass lens serves as the (optical) object for the eye, and because the eye cannot focus on objects beyond its far point, the diverging lens must form an image of distant (physical) objects at a point that is closer than the far point.

Figure shows two eyes with a bi-concave lens in front of each. The first one shows a tree as a distant object, and the image of the tree closer to the lens. The second one shows parallel rays from the distant object striking the lens and diverging before they strike the cornea. They then converge on the retina.
Correction of nearsightedness requires a diverging lens that compensates for overconvergence by the eye. The diverging lens produces an image closer to the eye than the physical object. This image serves as the optical object for the eye, and the nearsighted person can see it clearly because it is closer than their far point.

Correcting nearsightedness

What optical power of eyeglass lens is needed to correct the vision of a nearsighted person whose far point is 30.0 cm? Assume the corrective lens is fixed 1.50 cm away from the eye.

Strategy

You want this nearsighted person to be able to see distant objects clearly, which means that the eyeglass lens must produce an image 30.0 cm from the eye for an object at infinity. An image 30.0 cm from the eye will be 30.0 cm 1.50 cm = 28.5 cm from the eyeglass lens. Therefore, we must have d i = −28.5 cm when d o = . The image distance is negative because it is on the same side of the eyeglass lens as the object.

Solution

Since d i and d o are known, we can find the optical power of the eyeglass lens by using [link] :

P = 1 d o + 1 d i = 1 + 1 −0.285 m = −3.51 D .

Significance

The negative optical power indicates a diverging (or concave) lens, as expected. If you examine eyeglasses for nearsighted people, you will find the lenses are thinnest in the center. Additionally, if you examine a prescription for eyeglasses for nearsighted people, you will find that the prescribed optical power is negative and given in units of diopters.

Got questions? Get instant answers now!
Practice Key Terms 6

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, University physics volume 3. OpenStax CNX. Nov 04, 2016 Download for free at http://cnx.org/content/col12067/1.4
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'University physics volume 3' conversation and receive update notifications?

Ask