<< Chapter < Page Chapter >> Page >
By the end of this section, you will be able to:
  • Describe the Standard Model in terms of the four fundamental forces and exchange particles
  • Draw a Feynman diagram for a simple particle interaction
  • Use Heisenberg’s uncertainty principle to determine the range of forces described by the Standard Model
  • Explain the rationale behind grand unification theories

The chief intellectual activity of any scientist is the development and revision of scientific models. A particle physicist seeks to develop models of particle interactions. This work builds directly on work done on gravity and electromagnetism in the seventeenth, eighteenth, and nineteenth centuries. The ultimate goal of physics is a unified “theory of everything” that describes all particle interactions in terms of a single elegant equation and a picture. The equation itself might be complex, but many scientists suspect the idea behind the equation will make us exclaim: “How could we have missed it? It was so obvious!”

In this section, we introduce the Standard Model, which is the best current model of particle interactions. We describe the Standard Model in detail in terms of electromagnetic, weak nuclear, and strong forces. At the end of this section, we review unification theories in particle physics.

Introduction to the standard model

The Standard Model    of particle interactions contains two ideas: electroweak theory and quantum chromodynamics (QCD)    (the force acting between color charges). Electroweak theory unifies the theory of quantum electrodynamics (QED)    , the modern equivalent of classical electromagnetism, and the theory of weak nuclear interactions. The Standard Model combines the theory of relativity and quantum mechanics.

In the Standard Model, particle interactions occur through the exchange of bosons, the “force carriers.” For example, the electrostatic force is communicated between two positively charged particles by sending and receiving massless photons. This can occur at a theoretical infinite range. The result of these interactions is Coulomb repulsion (or attraction). Similarly, quarks bind together through the exchange of massless gluons. Leptons scatter off other leptons (or decay into lighter particles) through the exchange of massive W and Z bosons. A summary of forces as described by the Standard Model is given in [link] . The gravitational force, mediated by the exchange of massless gravitations, is added in this table for completeness but is not part of the Standard Model.

Four forces and the standard model
Force Relative strength Exchange particle (bosons) Particles acted upon Range
Strong 1 Gluon Quarks 10 −15 m
Electromagnetic 1/137 photon Charged particles
Weak 10 −10 W + , W , Z bosons Quarks, leptons, neutrinos 10 −18 m
Gravitational 10 −38 graviton All particles

The Standard Model can be expressed in terms of equations and diagrams. The equations are complex and are usually covered in a more advanced course in modern physics. However, the essence of the Standard Model can be captured using Feynman diagram     s . A Feynman diagram, invented by American physicist Richard Feynman (1918–1988), is a space-time diagram that describes how particles move and interact. Different symbols are used for different particles. Particle interactions in one dimension are shown as a time-position graph (not a position-time graph). As an example, consider the scattering of an electron and electron-neutrino ( [link] ). The electron moves toward positive values of x (to the right) and collides with an electron neutrino moving to the left. The electron exchanges a Z boson (charge zero). The electron scatters to the left and the neutrino scatters to the right. This exchange is not instantaneous. The Z boson travels from one particle to the other over a short period of time. The interaction of the electron and neutrino is said to occur via the weak nuclear force. This force cannot be explained by classical electromagnetism because the charge of the neutrino is zero. The weak nuclear force is discussed again later in this section.

Questions & Answers

what is the best parenting stlyles in nigeria
Maimuna Reply
Difference between voluntary and non voluntary
Robert Reply
how possible science can explain natural occuring
David Reply
why qualitative method
David
using hypothetical examples from contemporary society discuss sociological imaginations
Orient Reply
Using Social Identity Theory, explain how group membership influences individual behavior and intergroup dynamics. Provide examples of how in-group favoritism and out-group bias manifest in real-world scenarios, such as in schools, workplaces, or communities. What strategies can be employed to mitigate negative intergroup behaviors rooted in social identity?
Adejumobi Reply
of course group membership can contribute in influencing an individual behaviour this is because when ever an individual associate with other group members he or she try to adopt their behaviour in one way or the other because human beings are very dynamic
Faiza
introduction to sociology
Hussain Reply
Sociology is the scientific study of the society. It's about studying man in groups at the complex form.
Prince
start new n questions too
Emmaunella Reply
Good evening everyone
JOE
what does secularization means
Munashe
summarize halerambos & holbon
David Reply
the Three stages of Auguste Comte
Clementina Reply
what are agents of socialization
Antonio Reply
socialazatio
Alkasim
sociology of education
Nuhu Reply
definition of sociology of education
Nuhu
definition of sociology of education
Emmaunella
what is culture
Abdulrahim Reply
shared beliefs, values, and practices
AI-Robot
What are the two type of scientific method
ogunniran Reply
I'm willing to join you
Aceng Reply
what are the scientific method of sociology
Man
what is socialization
ogunniran Reply
the process wherein people come to understand societal norms and expectations, to accept society's beliefs, and to be aware of societal values
AI-Robot
scientific method in doing research
ogunniran
defimition of sickness in afica
Anita
Cosmology
ogunniran
Hmmm
ogunniran
send
Alkasim
sendggg
Alkasim
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 5

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, University physics volume 3. OpenStax CNX. Nov 04, 2016 Download for free at http://cnx.org/content/col12067/1.4
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'University physics volume 3' conversation and receive update notifications?

Ask