<< Chapter < Page Chapter >> Page >
By the end of this section, you will be able to:
  • Compare and contrast different types of particle accelerators
  • Describe the purpose, components, and function of a typical colliding beam machine
  • Explain the role of each type of subdetector of a typical multipurpose particle detector
  • Use the curvature of a charge track to determine the momentum of a particle

The goal of experimental particle physics is to accurately measure elementary particles. The primary method used to achieve this end is to produce these particles in high-energy collisions and then measure the products of using highly sensitive particle detectors. These experiments are used to test and revise scientific models of particle interactions. The purpose of this section is to describe particle accelerators and detectors. Modern machines are based on earlier ones, so it is helpful to present a brief history of accelerators and detectors.

Early particle accelerators

A particle accelerator    is a machine designed to accelerate charged particles. This acceleration is usually achieved with strong electric fields, magnetic fields, or both. A simple example of a particle accelerator is the Van de Graaff accelerator (see Electric Potential ). This type of accelerator collects charges on a hollow metal sphere using a moving belt. When the electrostatic potential difference of the sphere is sufficiently large, the field is used to accelerate particles through an evacuated tube. Energies produced by a Van de Graaff accelerator are not large enough to create new particles, but the machine was important for early exploration of the atomic nucleus.

Larger energies can be produced by a linear accelerator (called a “linac”). Charged particles produced at the beginning of the linac are accelerated by a continuous line of charged hollow tubes. The voltage between a given pair of tubes is set to draw the charged particle in, and once the particle arrives, the voltage between the next pair of tubes is set to push the charged particle out. In other words, voltages are applied in such a way that the tubes deliver a series of carefully synchronized electric kicks ( [link] ). Modern linacs employ radio frequency (RF) cavities that set up oscillating electromagnetic fields, which propel the particle forward like a surfer on an ocean wave. Linacs can accelerate electrons to over 100 MeV. (Electrons with kinetic energies greater than 2 MeV are moving very close to the speed of light.) In modern particle research, linear accelerators are often used in the first stage of acceleration.

There are two figures, both showing four tubes in a row, labeled drift tubes. The tube on the left is the shortest. The tubes become progressively longer as you go right. Alternate tubes are connected to the opposite terminals of an AC source. An arrow labeled beam passes through the tubes from left to right. The base of the arrow, to the left is labeled ion source. Particles are shown moving along the arrow. In the first figure, the second and fourth tubes have a plus sign and the other two have a minus sign. In the second figure, this polarity is reversed.
In a linear accelerator, charged tubes accelerate particles in a series of electromagnetic kicks. Each tube is longer than the preceding tube because the particle is moving faster as it accelerates.

Accelerating tubes

A linear accelerator designed to produce a beam of 800-MeV protons has 2000 accelerating tubes separated by gaps. What average voltage must be applied between tubes to achieve the desired energy? ( Hint : U = q V . )

Strategy

The energy given to the proton in each gap between tubes is U = q V , where q is the proton’s charge and V is the potential difference (voltage) across the gap. Since q = q e = 1.6 × 10 −19 C and 1 eV = ( 1 V ) ( 1.6 × 10 −19 C ) , the proton gains 1 eV in energy for each volt across the gap that it passes through. The ac voltage applied to the tubes is timed so that it adds to the energy in each gap. The effective voltage is the sum of the gap voltages and equals 800 MV to give each proton an energy of 800 MeV.

Solution

There are 2000 gaps and the sum of the voltages across them is 800 MV. Therefore, the average voltage applied is 0.4 MV or 400 kV.

Significance

A voltage of this magnitude is not difficult to achieve in a vacuum. Much larger gap voltages would be required for higher energy, such as those at the 50-GeV SLAC facility. Synchrotrons are aided by the circular path of the accelerated particles, which can orbit many times, effectively multiplying the number of accelerations by the number of orbits. This makes it possible to reach energies greater than 1 TeV.

Got questions? Get instant answers now!
Practice Key Terms 4

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, University physics volume 3. OpenStax CNX. Nov 04, 2016 Download for free at http://cnx.org/content/col12067/1.4
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'University physics volume 3' conversation and receive update notifications?

Ask