<< Chapter < Page Chapter >> Page >
By the end of this section, you will be able to:
  • Distinguish three conservation laws: baryon number, lepton number, and strangeness
  • Use rules to determine the total baryon number, lepton number, and strangeness of particles before and after a reaction
  • Use baryon number, lepton number, and strangeness conservation to determine if particle reactions or decays occur

Conservation laws are critical to an understanding of particle physics. Strong evidence exists that energy, momentum, and angular momentum are all conserved in all particle interactions. The annihilation of an electron and positron at rest, for example, cannot produce just one photon because this violates the conservation of linear momentum. As discussed in Relativity , the special theory of relativity modifies definitions of momentum, energy, and other familiar quantities. In particular, the relativistic momentum of a particle differs from its classical momentum by a factor γ = 1 / 1 ( v / c ) 2 that varies from 1 to , depending on the speed of the particle.

In previous chapters, we encountered other conservation laws as well. For example, charge is conserved in all electrostatic phenomena. Charge lost in one place is gained in another because charge is carried by particles. No known physical processes violate charge conservation. In the next section, we describe three less-familiar conservation laws: baryon number, lepton number, and strangeness. These are by no means the only conservation laws in particle physics.

Baryon number conservation

No conservation law considered thus far prevents a neutron from decaying via a reaction such as

n e + + e .

This process conserves charge, energy, and momentum. However, it does not occur because it violates the law of baryon number conservation. This law requires that the total baryon number of a reaction is the same before and after the reaction occurs. To determine the total baryon number, every elementary particle is assigned a baryon number     B . The baryon number has the value B = + 1 for baryons, –1 for antibaryons, and 0 for all other particles. Returning to the above case (the decay of the neutron into an electron-positron pair), the neutron has a value B = + 1 , whereas the electron and the positron each has a value of 0. Thus, the decay does not occur because the total baryon number changes from 1 to 0. However, the proton-antiproton collision process

p + p p + p + p + p ,

does satisfy the law of conservation of baryon number because the baryon number is zero before and after the interaction. The baryon number for several common particles is given in [link] .

Conserved properties of particles
Particle name Symbol Lepton number ( L e ) Lepton number ( L μ ) Lepton number ( L τ ) Baryon number ( B ) Strange-ness number
Electron e 1 0 0 0 0
Electron neutrino υ e 1 0 0 0 0
Muon μ 0 1 0 0 0
Muon neutrino υ μ 0 1 0 0 0
Tau τ 0 0 1 0 0
Tau neutrino υ τ 0 0 1 0 0
Pion π + 0 0 0 0 0
Positive kaon K + 0 0 0 0 1
Negative kaon K 0 0 0 0 –1
Proton p 0 0 0 1 0
Neutron n 0 0 0 1 0
Lambda zero Λ 0 0 0 0 1 –1
Positive sigma Σ + 0 0 0 1 –1
Negative sigma Σ 0 0 0 1 –1
Xi zero Ξ 0 0 0 0 1 –2
Negative xi Ξ 0 0 0 1 –2
Omega Ω 0 0 0 1 –3

Baryon number conservation

Based on the law of conservation of baryon number, which of the following reactions can occur?

( a ) π + p π 0 + n + π + π + ( b ) p + p p + p + p

Strategy

Determine the total baryon number for the reactants and products, and require that this value does not change in the reaction. Solution

For reaction (a), the net baryon number of the two reactants is 0 + 1 = 1 and the net baryon number of the four products is 0 + 1 + 0 + 0 = 1 . Since the net baryon numbers of the reactants and products are equal, this reaction is allowed on the basis of the baryon number conservation law.

For reaction (b), the net baryon number of the reactants is 1 + ( −1 ) = 0 and the net baryon number of the proposed products is 1 + 1 + ( −1 ) = 1 . Since the net baryon numbers of the reactants and proposed products are not equal, this reaction cannot occur.

Significance

Baryon number is conserved in the first reaction, but not in the second. Baryon number conservation constrains what reactions can and cannot occur in nature.

Got questions? Get instant answers now!

Questions & Answers

What is a cell
Odelana Reply
how does Neisseria cause meningitis
Nyibol Reply
what is microbiologist
Muhammad Reply
what is errata
Muhammad
is the branch of biology that deals with the study of microorganisms.
Ntefuni Reply
What is microbiology
Mercy Reply
studies of microbes
Louisiaste
when we takee the specimen which lumbar,spin,
Ziyad Reply
How bacteria create energy to survive?
Muhamad Reply
Bacteria doesn't produce energy they are dependent upon their substrate in case of lack of nutrients they are able to make spores which helps them to sustain in harsh environments
_Adnan
But not all bacteria make spores, l mean Eukaryotic cells have Mitochondria which acts as powerhouse for them, since bacteria don't have it, what is the substitution for it?
Muhamad
they make spores
Louisiaste
what is sporadic nd endemic, epidemic
Aminu Reply
the significance of food webs for disease transmission
Abreham
food webs brings about an infection as an individual depends on number of diseased foods or carriers dully.
Mark
explain assimilatory nitrate reduction
Esinniobiwa Reply
Assimilatory nitrate reduction is a process that occurs in some microorganisms, such as bacteria and archaea, in which nitrate (NO3-) is reduced to nitrite (NO2-), and then further reduced to ammonia (NH3).
Elkana
This process is called assimilatory nitrate reduction because the nitrogen that is produced is incorporated in the cells of microorganisms where it can be used in the synthesis of amino acids and other nitrogen products
Elkana
Examples of thermophilic organisms
Shu Reply
Give Examples of thermophilic organisms
Shu
advantages of normal Flora to the host
Micheal Reply
Prevent foreign microbes to the host
Abubakar
they provide healthier benefits to their hosts
ayesha
They are friends to host only when Host immune system is strong and become enemies when the host immune system is weakened . very bad relationship!
Mark
what is cell
faisal Reply
cell is the smallest unit of life
Fauziya
cell is the smallest unit of life
Akanni
ok
Innocent
cell is the structural and functional unit of life
Hasan
is the fundamental units of Life
Musa
what are emergency diseases
Micheal Reply
There are nothing like emergency disease but there are some common medical emergency which can occur simultaneously like Bleeding,heart attack,Breathing difficulties,severe pain heart stock.Hope you will get my point .Have a nice day ❣️
_Adnan
define infection ,prevention and control
Innocent
I think infection prevention and control is the avoidance of all things we do that gives out break of infections and promotion of health practices that promote life
Lubega
Heyy Lubega hussein where are u from?
_Adnan
en français
Adama
which site have a normal flora
ESTHER Reply
Many sites of the body have it Skin Nasal cavity Oral cavity Gastro intestinal tract
Safaa
skin
Asiina
skin,Oral,Nasal,GIt
Sadik
How can Commensal can Bacteria change into pathogen?
Sadik
How can Commensal Bacteria change into pathogen?
Sadik
all
Tesfaye
by fussion
Asiina
what are the advantages of normal Flora to the host
Micheal
what are the ways of control and prevention of nosocomial infection in the hospital
Micheal
what is inflammation
Shelly Reply
part of a tissue or an organ being wounded or bruised.
Wilfred
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 3

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, University physics volume 3. OpenStax CNX. Nov 04, 2016 Download for free at http://cnx.org/content/col12067/1.4
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'University physics volume 3' conversation and receive update notifications?

Ask