<< Chapter < Page Chapter >> Page >
By the end of this section, you will be able to:
  • Distinguish three conservation laws: baryon number, lepton number, and strangeness
  • Use rules to determine the total baryon number, lepton number, and strangeness of particles before and after a reaction
  • Use baryon number, lepton number, and strangeness conservation to determine if particle reactions or decays occur

Conservation laws are critical to an understanding of particle physics. Strong evidence exists that energy, momentum, and angular momentum are all conserved in all particle interactions. The annihilation of an electron and positron at rest, for example, cannot produce just one photon because this violates the conservation of linear momentum. As discussed in Relativity , the special theory of relativity modifies definitions of momentum, energy, and other familiar quantities. In particular, the relativistic momentum of a particle differs from its classical momentum by a factor γ = 1 / 1 ( v / c ) 2 that varies from 1 to , depending on the speed of the particle.

In previous chapters, we encountered other conservation laws as well. For example, charge is conserved in all electrostatic phenomena. Charge lost in one place is gained in another because charge is carried by particles. No known physical processes violate charge conservation. In the next section, we describe three less-familiar conservation laws: baryon number, lepton number, and strangeness. These are by no means the only conservation laws in particle physics.

Baryon number conservation

No conservation law considered thus far prevents a neutron from decaying via a reaction such as

n e + + e .

This process conserves charge, energy, and momentum. However, it does not occur because it violates the law of baryon number conservation. This law requires that the total baryon number of a reaction is the same before and after the reaction occurs. To determine the total baryon number, every elementary particle is assigned a baryon number     B . The baryon number has the value B = + 1 for baryons, –1 for antibaryons, and 0 for all other particles. Returning to the above case (the decay of the neutron into an electron-positron pair), the neutron has a value B = + 1 , whereas the electron and the positron each has a value of 0. Thus, the decay does not occur because the total baryon number changes from 1 to 0. However, the proton-antiproton collision process

p + p p + p + p + p ,

does satisfy the law of conservation of baryon number because the baryon number is zero before and after the interaction. The baryon number for several common particles is given in [link] .

Conserved properties of particles
Particle name Symbol Lepton number ( L e ) Lepton number ( L μ ) Lepton number ( L τ ) Baryon number ( B ) Strange-ness number
Electron e 1 0 0 0 0
Electron neutrino υ e 1 0 0 0 0
Muon μ 0 1 0 0 0
Muon neutrino υ μ 0 1 0 0 0
Tau τ 0 0 1 0 0
Tau neutrino υ τ 0 0 1 0 0
Pion π + 0 0 0 0 0
Positive kaon K + 0 0 0 0 1
Negative kaon K 0 0 0 0 –1
Proton p 0 0 0 1 0
Neutron n 0 0 0 1 0
Lambda zero Λ 0 0 0 0 1 –1
Positive sigma Σ + 0 0 0 1 –1
Negative sigma Σ 0 0 0 1 –1
Xi zero Ξ 0 0 0 0 1 –2
Negative xi Ξ 0 0 0 1 –2
Omega Ω 0 0 0 1 –3

Baryon number conservation

Based on the law of conservation of baryon number, which of the following reactions can occur?

( a ) π + p π 0 + n + π + π + ( b ) p + p p + p + p

Strategy

Determine the total baryon number for the reactants and products, and require that this value does not change in the reaction. Solution

For reaction (a), the net baryon number of the two reactants is 0 + 1 = 1 and the net baryon number of the four products is 0 + 1 + 0 + 0 = 1 . Since the net baryon numbers of the reactants and products are equal, this reaction is allowed on the basis of the baryon number conservation law.

For reaction (b), the net baryon number of the reactants is 1 + ( −1 ) = 0 and the net baryon number of the proposed products is 1 + 1 + ( −1 ) = 1 . Since the net baryon numbers of the reactants and proposed products are not equal, this reaction cannot occur.

Significance

Baryon number is conserved in the first reaction, but not in the second. Baryon number conservation constrains what reactions can and cannot occur in nature.

Got questions? Get instant answers now!

Questions & Answers

I'm interested in biological psychology and cognitive psychology
Tanya Reply
what does preconceived mean
sammie Reply
physiological Psychology
Nwosu Reply
How can I develope my cognitive domain
Amanyire Reply
why is communication effective
Dakolo Reply
Communication is effective because it allows individuals to share ideas, thoughts, and information with others.
effective communication can lead to improved outcomes in various settings, including personal relationships, business environments, and educational settings. By communicating effectively, individuals can negotiate effectively, solve problems collaboratively, and work towards common goals.
it starts up serve and return practice/assessments.it helps find voice talking therapy also assessments through relaxed conversation.
miss
Every time someone flushes a toilet in the apartment building, the person begins to jumb back automatically after hearing the flush, before the water temperature changes. Identify the types of learning, if it is classical conditioning identify the NS, UCS, CS and CR. If it is operant conditioning, identify the type of consequence positive reinforcement, negative reinforcement or punishment
Wekolamo Reply
please i need answer
Wekolamo
because it helps many people around the world to understand how to interact with other people and understand them well, for example at work (job).
Manix Reply
Agreed 👍 There are many parts of our brains and behaviors, we really need to get to know. Blessings for everyone and happy Sunday!
ARC
A child is a member of community not society elucidate ?
JESSY Reply
Isn't practices worldwide, be it psychology, be it science. isn't much just a false belief of control over something the mind cannot truly comprehend?
Simon Reply
compare and contrast skinner's perspective on personality development on freud
namakula Reply
Skinner skipped the whole unconscious phenomenon and rather emphasized on classical conditioning
war
explain how nature and nurture affect the development and later the productivity of an individual.
Amesalu Reply
nature is an hereditary factor while nurture is an environmental factor which constitute an individual personality. so if an individual's parent has a deviant behavior and was also brought up in an deviant environment, observation of the behavior and the inborn trait we make the individual deviant.
Samuel
I am taking this course because I am hoping that I could somehow learn more about my chosen field of interest and due to the fact that being a PsyD really ignites my passion as an individual the more I hope to learn about developing and literally explore the complexity of my critical thinking skills
Zyryn Reply
good👍
Jonathan
and having a good philosophy of the world is like a sandwich and a peanut butter 👍
Jonathan
generally amnesi how long yrs memory loss
Kelu Reply
interpersonal relationships
Abdulfatai Reply
What would be the best educational aid(s) for gifted kids/savants?
Heidi Reply
treat them normal, if they want help then give them. that will make everyone happy
Saurabh
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 3

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, University physics volume 3. OpenStax CNX. Nov 04, 2016 Download for free at http://cnx.org/content/col12067/1.4
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'University physics volume 3' conversation and receive update notifications?

Ask