<< Chapter < Page Chapter >> Page >
By the end of this section, you will be able to:
  • Describe the decay of a radioactive substance in terms of its decay constant and half-life
  • Use the radioactive decay law to estimate the age of a substance
  • Explain the natural processes that allow the dating of living tissue using 14 C

In 1896, Antoine Becquerel discovered that a uranium-rich rock emits invisible rays that can darken a photographic plate in an enclosed container. Scientists offer three arguments for the nuclear origin of these rays. First, the effects of the radiation do not vary with chemical state; that is, whether the emitting material is in the form of an element or compound. Second, the radiation does not vary with changes in temperature or pressure—both factors that in sufficient degree can affect electrons in an atom. Third, the very large energy of the invisible rays (up to hundreds of eV) is not consistent with atomic electron transitions (only a few eV). Today, this radiation is explained by the conversion of mass into energy deep within the nucleus of an atom. The spontaneous emission of radiation from nuclei is called nuclear radioactivity    ( [link] ).

A yellow triangle with a black outline, enclosing a fan shaped structure is shown. The “fan” is black and has three blades.
The international ionizing radiation symbol is universally recognized as the warning symbol for nuclear radiation.

Radioactive decay law

When an individual nucleus transforms into another with the emission of radiation, the nucleus is said to decay    . Radioactive decay occurs for all nuclei with Z > 82 , and also for some unstable isotopes with Z < 83 . The decay rate is proportional to the number of original (undecayed) nuclei N in a substance. The number of nuclei lost to decay, d N in time interval dt , is written

d N d t = λ N

where λ is called the decay constant    . (The minus sign indicates the number of original nuclei decreases over time.) In other words, the more nuclei available to decay, the more that do decay (in time dt ). This equation can be rewritten as

d N N = λ d t .

Integrating both sides of the equation, and defining N 0 to be the number of nuclei at t = 0 , we obtain

N 0 N d N N = 0 t λ d t .

This gives us

ln N N 0 = λ t .

Taking the left and right sides of the equation as a power of e , we have the radioactive decay law    .

Radioactive decay law

The total number N of radioactive nuclei remaining after time t is

N = N 0 e λ t

where λ is the decay constant for the particular nucleus.

The total number of nuclei drops very rapidly at first, and then more slowly ( [link] ).

A graph of N versus t is shown. It is labeled N equal to N subscript 0 e to the power minus lambda t. The value of N is maximum, N subscript 0, at t =0 and it reduces with time till it reaches 0. At t = T subscript half, N = N subscript 0 by 2 and at t = 2T subscript half, N = N subscript 0 by 4.
A plot of the radioactive decay law demonstrates that the number of nuclei remaining in a decay sample drops dramatically during the first moments of decay.

The half-life     ( T 1 / 2 ) of a radioactive substance is defined as the time for half of the original nuclei to decay (or the time at which half of the original nuclei remain). The half-lives of unstable isotopes are shown in the chart of nuclides in [link] . The number of radioactive nuclei remaining after an integer ( n ) number of half-lives is therefore

N = N 0 2 n

If the decay constant ( λ ) is large, the half-life is small, and vice versa. To determine the relationship between these quantities, note that when t = T 1 / 2 , then N = N 0 / 2 . Thus, [link] can be rewritten as

Questions & Answers

A golfer on a fairway is 70 m away from the green, which sits below the level of the fairway by 20 m. If the golfer hits the ball at an angle of 40° with an initial speed of 20 m/s, how close to the green does she come?
Aislinn Reply
cm
tijani
what is titration
John Reply
what is physics
Siyaka Reply
A mouse of mass 200 g falls 100 m down a vertical mine shaft and lands at the bottom with a speed of 8.0 m/s. During its fall, how much work is done on the mouse by air resistance
Jude Reply
Can you compute that for me. Ty
Jude
what is the dimension formula of energy?
David Reply
what is viscosity?
David
what is inorganic
emma Reply
what is chemistry
Youesf Reply
what is inorganic
emma
Chemistry is a branch of science that deals with the study of matter,it composition,it structure and the changes it undergoes
Adjei
please, I'm a physics student and I need help in physics
Adjanou
chemistry could also be understood like the sexual attraction/repulsion of the male and female elements. the reaction varies depending on the energy differences of each given gender. + masculine -female.
Pedro
A ball is thrown straight up.it passes a 2.0m high window 7.50 m off the ground on it path up and takes 1.30 s to go past the window.what was the ball initial velocity
Krampah Reply
2. A sled plus passenger with total mass 50 kg is pulled 20 m across the snow (0.20) at constant velocity by a force directed 25° above the horizontal. Calculate (a) the work of the applied force, (b) the work of friction, and (c) the total work.
Sahid Reply
you have been hired as an espert witness in a court case involving an automobile accident. the accident involved car A of mass 1500kg which crashed into stationary car B of mass 1100kg. the driver of car A applied his brakes 15 m before he skidded and crashed into car B. after the collision, car A s
Samuel Reply
can someone explain to me, an ignorant high school student, why the trend of the graph doesn't follow the fact that the higher frequency a sound wave is, the more power it is, hence, making me think the phons output would follow this general trend?
Joseph Reply
Nevermind i just realied that the graph is the phons output for a person with normal hearing and not just the phons output of the sound waves power, I should read the entire thing next time
Joseph
Follow up question, does anyone know where I can find a graph that accuretly depicts the actual relative "power" output of sound over its frequency instead of just humans hearing
Joseph
"Generation of electrical energy from sound energy | IEEE Conference Publication | IEEE Xplore" ***ieeexplore.ieee.org/document/7150687?reload=true
Ryan
what's motion
Maurice Reply
what are the types of wave
Maurice
answer
Magreth
progressive wave
Magreth
hello friend how are you
Muhammad Reply
fine, how about you?
Mohammed
hi
Mujahid
A string is 3.00 m long with a mass of 5.00 g. The string is held taut with a tension of 500.00 N applied to the string. A pulse is sent down the string. How long does it take the pulse to travel the 3.00 m of the string?
yasuo Reply
Who can show me the full solution in this problem?
Reofrir Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, University physics volume 3. OpenStax CNX. Nov 04, 2016 Download for free at http://cnx.org/content/col12067/1.4
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'University physics volume 3' conversation and receive update notifications?

Ask