<< Chapter < Page Chapter >> Page >
By the end of this section, you will be able to:
  • Describe the decay of a radioactive substance in terms of its decay constant and half-life
  • Use the radioactive decay law to estimate the age of a substance
  • Explain the natural processes that allow the dating of living tissue using 14 C

In 1896, Antoine Becquerel discovered that a uranium-rich rock emits invisible rays that can darken a photographic plate in an enclosed container. Scientists offer three arguments for the nuclear origin of these rays. First, the effects of the radiation do not vary with chemical state; that is, whether the emitting material is in the form of an element or compound. Second, the radiation does not vary with changes in temperature or pressure—both factors that in sufficient degree can affect electrons in an atom. Third, the very large energy of the invisible rays (up to hundreds of eV) is not consistent with atomic electron transitions (only a few eV). Today, this radiation is explained by the conversion of mass into energy deep within the nucleus of an atom. The spontaneous emission of radiation from nuclei is called nuclear radioactivity    ( [link] ).

A yellow triangle with a black outline, enclosing a fan shaped structure is shown. The “fan” is black and has three blades.
The international ionizing radiation symbol is universally recognized as the warning symbol for nuclear radiation.

Radioactive decay law

When an individual nucleus transforms into another with the emission of radiation, the nucleus is said to decay    . Radioactive decay occurs for all nuclei with Z > 82 , and also for some unstable isotopes with Z < 83 . The decay rate is proportional to the number of original (undecayed) nuclei N in a substance. The number of nuclei lost to decay, d N in time interval dt , is written

d N d t = λ N

where λ is called the decay constant    . (The minus sign indicates the number of original nuclei decreases over time.) In other words, the more nuclei available to decay, the more that do decay (in time dt ). This equation can be rewritten as

d N N = λ d t .

Integrating both sides of the equation, and defining N 0 to be the number of nuclei at t = 0 , we obtain

N 0 N d N N = 0 t λ d t .

This gives us

ln N N 0 = λ t .

Taking the left and right sides of the equation as a power of e , we have the radioactive decay law    .

Radioactive decay law

The total number N of radioactive nuclei remaining after time t is

N = N 0 e λ t

where λ is the decay constant for the particular nucleus.

The total number of nuclei drops very rapidly at first, and then more slowly ( [link] ).

A graph of N versus t is shown. It is labeled N equal to N subscript 0 e to the power minus lambda t. The value of N is maximum, N subscript 0, at t =0 and it reduces with time till it reaches 0. At t = T subscript half, N = N subscript 0 by 2 and at t = 2T subscript half, N = N subscript 0 by 4.
A plot of the radioactive decay law demonstrates that the number of nuclei remaining in a decay sample drops dramatically during the first moments of decay.

The half-life     ( T 1 / 2 ) of a radioactive substance is defined as the time for half of the original nuclei to decay (or the time at which half of the original nuclei remain). The half-lives of unstable isotopes are shown in the chart of nuclides in [link] . The number of radioactive nuclei remaining after an integer ( n ) number of half-lives is therefore

N = N 0 2 n

If the decay constant ( λ ) is large, the half-life is small, and vice versa. To determine the relationship between these quantities, note that when t = T 1 / 2 , then N = N 0 / 2 . Thus, [link] can be rewritten as

Questions & Answers

material that allows electric current to pass through
Deng Reply
material which don't allow electric current is called
Deng
insulators
Covenant
how to study physic and understand
Ewa Reply
what is conservative force with examples
Moses
what is work
Fredrick Reply
the transfer of energy by a force that causes an object to be displaced; the product of the component of the force in the direction of the displacement and the magnitude of the displacement
AI-Robot
why is it from light to gravity
Esther Reply
difference between model and theory
Esther
Is the ship moving at a constant velocity?
Kamogelo Reply
The full note of modern physics
aluet Reply
introduction to applications of nuclear physics
aluet Reply
the explanation is not in full details
Moses Reply
I need more explanation or all about kinematics
Moses
yes
zephaniah
I need more explanation or all about nuclear physics
aluet
Show that the equal masses particles emarge from collision at right angle by making explicit used of fact that momentum is a vector quantity
Muhammad Reply
yh
Isaac
A wave is described by the function D(x,t)=(1.6cm) sin[(1.2cm^-1(x+6.8cm/st] what are:a.Amplitude b. wavelength c. wave number d. frequency e. period f. velocity of speed.
Majok Reply
what is frontier of physics
Somto Reply
A body is projected upward at an angle 45° 18minutes with the horizontal with an initial speed of 40km per second. In hoe many seconds will the body reach the ground then how far from the point of projection will it strike. At what angle will the horizontal will strike
Gufraan Reply
Suppose hydrogen and oxygen are diffusing through air. A small amount of each is released simultaneously. How much time passes before the hydrogen is 1.00 s ahead of the oxygen? Such differences in arrival times are used as an analytical tool in gas chromatography.
Ezekiel Reply
please explain
Samuel
what's the definition of physics
Mobolaji Reply
what is physics
Nangun Reply
the science concerned with describing the interactions of energy, matter, space, and time; it is especially interested in what fundamental mechanisms underlie every phenomenon
AI-Robot
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, University physics volume 3. OpenStax CNX. Nov 04, 2016 Download for free at http://cnx.org/content/col12067/1.4
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'University physics volume 3' conversation and receive update notifications?

Ask