<< Chapter < Page Chapter >> Page >

In flat screen LCD televisions, a large light is generated at the back of the TV. The light travels to the front screen through millions of tiny units called pixels (picture elements). One of these is shown in [link] (a) and (b). Each unit has three cells, with red, blue, or green filters, each controlled independently. When the voltage across a liquid crystal is switched off, the liquid crystal passes the light through the particular filter. We can vary the picture contrast by varying the strength of the voltage applied to the liquid crystal.

Figure a is an illustration of a ray of initially unpolarized light going through a vertical polarizer, then an element labeled L C D no voltage ninety degree rotation, and finally a horizontal polarizer. The initially unpolarized light becomes vertically polarized after the vertical polarizer, then is rotated ninety degrees by the L C D element so that it is horizontally polarized, then it passes through the horizontal polarizer. Figure b is the same except that the L C D element is labeled voltage on, no rotation. The light coming out of the L C D element is thus vertically polarized and does not pass through the horizontal polarizer, making the region at this location dark. Finally, in figure c, a photograph is shown of a laptop computer that is open so that you can see its screen, which is on and has some icons and windows visible.
(a) Polarized light is rotated 90 ° by a liquid crystal and then passed by a polarizing filter that has its axis perpendicular to the direction of the original polarization. (b) When a voltage is applied to the liquid crystal, the polarized light is not rotated and is blocked by the filter, making the region dark in comparison with its surroundings. (c) LCDs can be made color specific, small, and fast enough to use in laptop computers and TVs.

Many crystals and solutions rotate the plane of polarization of light passing through them. Such substances are said to be optically active    . Examples include sugar water, insulin, and collagen ( [link] ). In addition to depending on the type of substance, the amount and direction of rotation depend on several other factors. Among these is the concentration of the substance, the distance the light travels through it, and the wavelength of light. Optical activity is due to the asymmetrical shape of molecules in the substance, such as being helical. Measurements of the rotation of polarized light passing through substances can thus be used to measure concentrations, a standard technique for sugars. It can also give information on the shapes of molecules, such as proteins, and factors that affect their shapes, such as temperature and pH.

The figure shows an initially unpolarized ray of light that passes through three optical elements. The first is a vertical polarizing filter, so the electric field is vertical after the ray passes through it. Next comes a block that is labeled optically active substance. The electric field comes out of the block rotated by an angle theta with respect to the vertical. Finally, the ray passes through another vertical polarizer that is labeled analyzer. The final electric field is vertically polarized again.
Optical activity is the ability of some substances to rotate the plane of polarization of light passing through them. The rotation is detected with a polarizing filter or analyzer.

Glass and plastic become optically active when stressed: the greater the stress, the greater the effect. Optical stress analysis on complicated shapes can be performed by making plastic models of them and observing them through crossed filters, as seen in [link] . It is apparent that the effect depends on wavelength as well as stress. The wavelength dependence is sometimes also used for artistic purposes.

The figure shows a photograph of a plastic lens that is being squeezed by a clamp. Rainbow patterns appear, showing the deformation of the lens. The colored regions are outlined by dark curves connecting the centers of the edges of the lens.
Optical stress analysis of a plastic lens placed between crossed polarizers. (credit: “Infopro”/Wikimedia Commons)

Another interesting phenomenon associated with polarized light is the ability of some crystals to split an unpolarized beam of light into two polarized beams. This occurs because the crystal has one value for the index of refraction of polarized light but a different value for the index of refraction of light polarized in the perpendicular direction, so that each component has its own angle of refraction. Such crystals are said to be birefringent    , and, when aligned properly, two perpendicularly polarized beams will emerge from the crystal ( [link] ). Birefringent crystals can be used to produce polarized beams from unpolarized light. Some birefringent materials preferentially absorb one of the polarizations. These materials are called dichroic and can produce polarization by this preferential absorption. This is fundamentally how polarizing filters and other polarizers work.

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, University physics volume 3. OpenStax CNX. Nov 04, 2016 Download for free at http://cnx.org/content/col12067/1.4
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'University physics volume 3' conversation and receive update notifications?

Ask