<< Chapter < Page | Chapter >> Page > |
Medium | Red
(660 nm) |
Orange
(610 nm) |
Yellow
(580 nm) |
Green
(550 nm) |
Blue
(470 nm) |
Violet
(410 nm) |
---|---|---|---|---|---|---|
Water | 1.331 | 1.332 | 1.333 | 1.335 | 1.338 | 1.342 |
Diamond | 2.410 | 2.415 | 2.417 | 2.426 | 2.444 | 2.458 |
Glass, crown | 1.512 | 1.514 | 1.518 | 1.519 | 1.524 | 1.530 |
Glass, flint | 1.662 | 1.665 | 1.667 | 1.674 | 1.684 | 1.698 |
Polystyrene | 1.488 | 1.490 | 1.492 | 1.493 | 1.499 | 1.506 |
Quartz, fused | 1.455 | 1.456 | 1.458 | 1.459 | 1.462 | 1.468 |
we can solve for the angle of refraction as
Similarly, the angle of incidence for the violet part of the beam is
The difference between these two angles is
Check Your Understanding In the preceding example, how much distance inside the block of flint glass would the red and the violet rays have to progress before they are separated by 1.0 mm?
9.3 cm
Rainbows are produced by a combination of refraction and reflection. You may have noticed that you see a rainbow only when you look away from the Sun. Light enters a drop of water and is reflected from the back of the drop ( [link] ). The light is refracted both as it enters and as it leaves the drop. Since the index of refraction of water varies with wavelength, the light is dispersed, and a rainbow is observed ( [link] (a)). (No dispersion occurs at the back surface, because the law of reflection does not depend on wavelength.) The actual rainbow of colors seen by an observer depends on the myriad rays being refracted and reflected toward the observer’s eyes from numerous drops of water. The effect is most spectacular when the background is dark, as in stormy weather, but can also be observed in waterfalls and lawn sprinklers. The arc of a rainbow comes from the need to be looking at a specific angle relative to the direction of the Sun, as illustrated in part (b). If two reflections of light occur within the water drop, another “secondary” rainbow is produced. This rare event produces an arc that lies above the primary rainbow arc, as in part (c), and produces colors in the reverse order of the primary rainbow, with red at the lowest angle and violet at the largest angle.
Notification Switch
Would you like to follow the 'University physics volume 3' conversation and receive update notifications?